
Phoenix Pro

CTR Electronics

Oct 17, 2023

Intro

1 Why Phoenix Pro? 3

2 Installing Phoenix Pro 5

3 Configuring your Device 9

4 Device Licensing 11

5 Phoenix Tuner X 17

6 TalonFX 45

7 Pigeon 2.0 47

8 CANcoder 51

9 API Usage 55

10 Simulation 101

11 WPILib Integration 105

12 Examples 109

13 CANivore Intro 115

14 CANivore Setup 117

15 CANivore API 123

16 Hardware-Attached Simulation 125

17 Advanced Configuration 127

18 Troubleshooting 131

19 Support 135

i

ii

Phoenix Pro

Welcome to the Phoenix Pro documentation. Individuals looking for Phoenix 5 documentation
may locate it here.
The Phoenix Pro software framework allows you to control and configure your CTR Electronics
Phoenix Pro Devices. Phoenix Pro represents a complete rewrite of the software framework
over the existing Phoenix 5 framework. With Phoenix Pro, users have access to many new
features that expand the control the user has over their devices.

Important: User’s looking for documentation on the Phoenix 6 API can find that on the
latest version of this site.

CTR Electronics Blog For news and updates about your CTR Electronics device, please check
out our blog.

Changelog A changelog containing API, Tuner and Firmware changes is
available here.

Migration Guide A Phoenix 5 migration guide is available here.
Installation Installation instructions for Phoenix API & Tuner.

Phoenix Tuner Documentation that introduces the companion application to
manage your CTR Electronics devices.

Hardware Reference Documentation for device specific configuration, trou-
bleshooting and setup instructions.
API Reference Documentation and details on using the CTR Electronics device API. This
includes usage of signals, configs, control requests, etc.
Examples Software API examples for controlling your devices.

Troubleshooting Common troubleshooting for hardware or software problems.

1

https://docs.ctre-phoenix.com/en/stable/
https://store.ctr-electronics.com/
https://pro.docs.ctr-electronics.com/en/latest/
https://store.ctr-electronics.com/blog/
https://api.ctr-electronics.com/changelog

Phoenix Pro

2

1
Why Phoenix Pro?

Phoenix Pro currently offers the following features and will further expand.

1.1 Comprehensive API

• Device signal getters return a StatusSignalValue object, expanding the functionality of
status signals.

• Control devices with an extensive list of flexible, strongly-typed control request objects.

1.2 Canonical Units

• Uses the popular Units library for C++ and standardizes on SI units.
• Signals are documented with the unit type and the minimum and maximum values.

1.3 Time Base Synchronization

• Using CANivore Timesync, signals from all devices are sampled and published to the
CAN bus at the same time.

• API can synchronously wait for data from multiple devices on a CANivore to arrive.

3

https://github.com/nholthaus/units

Phoenix Pro

1.4 Field Oriented Control (FOC)

• ~15% increase in peak power.
• Increased torque output; faster acceleration and higher speeds under load.
• Greater efficiency; the motor draws less current for the same output power, increasing
battery life.

• Support for direct torque control.

1.5 Improved Device Control

• New and improved control output types and closed-loop configuration.
• ImprovedMotion Magic® with jerk control and support for modifying the profile on the
fly.

• Kalman-based algorithms to reduce latency while maintaining smooth data.
• Fuse a CANcoder with the motor’s internal rotor, getting absolute data all the time while
using the fast internal sensor for closed looping.

1.6 Enhanced Support for CAN FD

• Improved CAN FD framing further reduces any CAN bus utilization issues.
• Larger CAN frames allow for the addition of more advanced features.

1.7 New Tuner X Self Tests

• Detailed and resolute self tests to improve debugging.

1.8 Free High-Fidelity Simulation

• Simulation closely follows the behavior of real hardware.
• Write unit-tests for your robot code, and make sure the robot works before deploying.
• Try Phoenix Pro before you buy!

4 Chapter 1. Why Phoenix Pro?

2
Installing Phoenix Pro

Installation of Phoenix Pro is comprised of a few steps
• Installing API
• Installing Tuner
• Updating Device Firmware
• Device Licensing

2.1 API Installation

Phoenix Pro currently supports Java and C++ for development.

2.1.1 System Requirements

The following targets are supported:
• NI roboRIO
• Windows 10/11 x86-64
• Linux x86-64 (desktop)

– Ubuntu 22.04 or newer
– Debian Bullseye or newer

• Linux ARM32 and ARM64 (Raspberry Pi, NVIDIA Jetson)
– Ubuntu 20.04 or newer
– Debian Bullseye or newer

• macOS (regular simulation only)

5

Phoenix Pro

2.1.2 Offline

Important: Users on non-Windows devices should skip to the Online installation instruc-
tions.

1. Download the Phoenix Framework Installer
2. Navigate through the installer, ensuring applicable options are selected

3. Apply the vendordep via WPILib VSCode Adding Offline Libraries

2.1.3 Online

FRC (Pro Only)

Important: This vendordep is for robot projects that are only using Phoenix Pro licensed
devices.

Paste the following URL in WPILib VS Code Install New Libraries (Online)
• https://maven.ctr-electronics.com/release/com/ctre/phoenixpro/
PhoenixPro-frc2023-latest.json

6 Chapter 2. Installing Phoenix Pro

https://github.com/CrossTheRoadElec/Phoenix-Releases/releases
https://docs.wpilib.org/en/stable/docs/software/vscode-overview/3rd-party-libraries.html#adding-offline-libraries
https://docs.wpilib.org/en/stable/docs/software/vscode-overview/3rd-party-libraries.html#libraries

Phoenix Pro

FRC (Pro & Phoenix 5)

Important: This vendordep is for robot projects that are using both Phoenix Pro licensed
devices & Phoenix 5 devices.

Paste the following URL in WPILib VS Code Install New Libraries (Online)
• https://maven.ctr-electronics.com/release/com/ctre/phoenixpro/
PhoenixProAnd5-frc2023-latest.json

Important: Devices on Phoenix Pro firmware must use the Phoenix Pro API. Device on
Phoenix 5 firmware must use the Phoenix 5 API.

non-FRC (Linux)

Phoenix Pro is distributed through our APT repository. Begin with adding the repository to
your APT sources.

sudo curl -s --compressed -o /usr/share/keyrings/ctr-pubkey.gpg "https://deb.ctr-
↪→electronics.com/ctr-pubkey.gpg"
sudo curl -s --compressed -o /etc/apt/sources.list.d/ctr<year>.list "https://deb.ctr-
↪→electronics.com/ctr<year>.list"

Note: <year> should be replaced with the year of Phoenix Pro software for which you have
purchased licenses.

After adding the sources, Phoenix Pro can be installed and updated using the following:

sudo apt update
sudo apt install phoenix-pro

Tip: To get a robot application up and running quickly, check out our non-FRC Linux example.

2.2 Tuner X Installation

Phoenix Tuner X is a modern version of the legacy Phoenix Tuner v1 application that is used
to configure CTRE Phoenix CAN devices.
Phoenix Tuner X is supported on Android, Windows 10 (build 1903+), and Windows 11. In-
stallation is available from the respective OS stores.
• Windows: https://apps.microsoft.com/store/detail/phoenix-tuner/9NVV4PWDW27Z
• Android: https://play.google.com/store/apps/details?id=com.ctre.phoenix_tuner

2.2. Tuner X Installation 7

https://docs.wpilib.org/en/stable/docs/software/vscode-overview/3rd-party-libraries.html#libraries
https://github.com/CrossTheRoadElec/PhoenixPro-Linux-Example
https://apps.microsoft.com/store/detail/phoenix-tuner/9NVV4PWDW27Z
https://play.google.com/store/apps/details?id=com.ctre.phoenix_tuner

Phoenix Pro

8 Chapter 2. Installing Phoenix Pro

3
Configuring your Device

All CTR Electronics devices have an ID that distinguishes multiple devices of the same type on
the same CAN bus. This should be configured to the user’s preference. Firmware upgrading
is also generally required for each new release of Phoenix Pro API. Please visit the relevant
Tuner pages on how to complete these steps.
Updating Firmware Click here to visit the section on updating your device firmware
Configuring IDs Click here to visit the section on configuring your device ID

9

Phoenix Pro

10 Chapter 3. Configuring your Device

4
Device Licensing

The following devices are eligible for single-device licensing:
• TalonFX (Falcon 500)
• Pigeon 2
• CANcoder

Additionally, CANivore is supported for licensing. When a CANivore is licensed, all devices
on that bus are Pro enabled without additional activation.

Important: All license activation and verification features are only available in Phoenix
Tuner X. Phoenix Tuner v1 does not support licensing actions.

4.1 Purchasing a License

Licenses can be purchased in the licensing section on the CTR Electronics store. Click here
to purchase a license.
Once a license has been purchased, you will receive an email confirmation confirming your
purchase. Once this email is received, the license should be visible in the list of licenses in
Tuner X.

4.2 Activating a License

Licenses are activated by first clicking on the LIC icon in the bottom right corner of the device
card.

11

https://store.ctr-electronics.com/licenses

Phoenix Pro

This will open up a screen which displays a list of currently attached licenses for that device.
Click on the Activate a new license button on the bottom of the popup.

12 Chapter 4. Device Licensing

Phoenix Pro

A list of purchased (but unattached) license seats are shown here. Click on the license you
would like to redeem and press the Activate Selected License button to confirm redemption
of that seat.

Warning: Users should be aware that license activation is permanent and irreversible

Once the activation is complete, the license will be downloaded to the device. In the event
that Tuner X disconnects from the internet or from the robot before this completes, the li-
cense is still activated and available for download the next time Tuner X is connected to the
internet/robot.

4.2. Activating a License 13

Phoenix Pro

4.2.1 Activating a License without a Robot

Devices that have been seen by Tuner X at least once will be available in Device History. This
can be useful for licensing a device when disconnected from the robot.

4.3 Verifying Activation State

An icon displaying the license state of your device is located in the bottom right of the device
card.

The below table can be used to determine your device license state for troubleshooting.

14 Chapter 4. Device Licensing

Phoenix Pro

State Image Description
Licensed Device is licensed for the current version of Phoenix Pro API.
CANivore con-
tains Licenses

CANivore contains at least one bus license, which it will use
to remote-license all compliant CAN devices.

Pro Licensing
Error

Device is licensed and there was an error communicating
license state.

Licensing Error Device is not licensed and there was an error communicating
license state.

Not Licensed Device is not licensed for this version of Phoenix Pro API.
Licensing Not
Supported

Icon not
present

Device does not support licensing or is using an incompatible
firmware for device licensing.

4.4 Troubleshooting

• Did you activate a license for this device?
– Clicking on the icon will show licenses that are attached to this device

• Is the latest diagnostic server running?
– Check the version at the bottom of Tuner X’s devices page.

∗ Latest version details can be found in the changelog under the latest Phoenix-Pro
version.

– Confirm the vendordep in your robot project is the latest version.
– Alternatively, you can deploy the temporary diagnostic server.

• Is the latest Pro firmware flashed onto the device?

4.4. Troubleshooting 15

https://api.ctr-electronics.com/changelog

Phoenix Pro

16 Chapter 4. Device Licensing

5
Phoenix Tuner X

5.1 What is Phoenix Tuner X?

Note: The legacy Phoenix Tuner v1 is still available for use and is installed as part of the
Phoenix installer.

Phoenix Tuner is the companion application allowing you to configure, analyze, update and
control your device. Users may choose to use either Phoenix Tuner v1 (included as part of
the Phoenix Installer) or Phoenix Tuner X (Android, Windows).
Phoenix Tuner X supports Android 8.0+ and Windows 10 (1903+) and Windows 11.

Important: While CTR Electronics supports both Phoenix Tuner v1 and Phoenix Tuner X,
certain features such as device licensing and improved batch upgrading are only available in
Phoenix Tuner X.

Tip: Many UI elements contain hover tooltips. That means the user can hover over them
with their mouse for a text explanation of what they do.

5.1.1 Connecting Tuner

Installed onto the robot controller (either manually or via a robot program) is the Phoenix
Diagnostics Server. This program enables communication between Tuner X and the robot
controller for managing and setting up devices.

17

https://play.google.com/store/apps/details?id=com.ctre.phoenix_tuner
https://apps.microsoft.com/store/detail/phoenix-tuner/9NVV4PWDW27Z

Phoenix Pro

Connecting to the Server

A dropdown/textbox is available in the upper-left flyout menu.

By clicking the arrow, you can change between presets such as:
• Driver Station – Retrieves the robot IP from the FRC Driver Station if launched
• roboRIO USB – Defaults to 172.22.11.2 which is the roboRIO IP when connected via
USB

• localhost – Use for simulation or hardware-attached CANivore.
Alternatively, the user can manually enter the robot IP into the textbox.

Configuring SSH Credentials (non-FRC)

When using a non-FRC robot controller (non-roboRIO), users must have their SSH credentials
configured in Settings for general use.

18 Chapter 5. Phoenix Tuner X

Phoenix Pro

Temporary Diagnostics (FRC)

Devices can be configured without a diagnostic server present. This can be useful if the
roboRIO has been freshly imaged. Ensure that you are pointed at the roboRIO IP address
(usually 10.TE.AM.2 where TE.AM is the team number) and then click the Run Temporary
Diagnostic Server in Settings.

5.1. What is Phoenix Tuner X? 19

Phoenix Pro

Changing Diagnostics Server Port (non-FRC)

The target server port can be changed in the Tuner X Settings page, which is accessed from
the flyout menu.

Important: The default port for diagnostic server is 1250. FRC users must not change this
under any circumstance.

20 Chapter 5. Phoenix Tuner X

Phoenix Pro

Localhost Troubleshooting

When Tuner X is first started after installation, it may request admin privileges to access the
localhost network. If the user disallows admin access, diagnostic servers hosted on the local
machine (simulation and hardware-attached CANivore) may not be visible in Tuner X. Users
can manually grant this permission afterward by clicking the Grant Localhost Permissions in
Settings.

5.1. What is Phoenix Tuner X? 21

Phoenix Pro

5.1.2 Device List

22 Chapter 5. Phoenix Tuner X

Phoenix Pro

Card Layout

5.1. What is Phoenix Tuner X? 23

Phoenix Pro

Grid Layout

The Devices page is the first page that is shown to the user upon launching the application.
The Devices page by default shows a grid of cards, but can be changed to a flat grid view
(similar to Phoenix Tuner v1) by clicking on the 4 grid square icon located in the top right
corner (not available in Android Tuner X).

Card Colors

The color of the device cards is helpful as a visual indicator of device state. The meaning of
the card color is also shown as text underneath the device title.

Color Description
Green Device has latest firmware.
Pur-
ple

Device has unexpected firmware version.

Yel-
low

A new firmware version is available. Check the changelog to determine if the new
version matters to your application

Red Device has a duplicate ID.
Blue Failed to retrieve list of available firmware.

24 Chapter 5. Phoenix Tuner X

Phoenix Pro

Clipboard Options & Licensing

Phoenix Tuner X provides icons at the bottom right of each card that will allow the user to
copy to the clipboard the device details, configs and Self Test. This can be useful for support
requests and additional debugging.

Devices that support CAN FD are shown via a CAN FD icon in the bottom right of the card.

Note: The CAN FD icon does not indicate that the device is currently on a CAN FD bus,
merely that it supports CAN FD.

The other major icon in the bottom right of the device card is the licensing indicator. This
showcases the licensing states and when clicked, will open the licensing dialog.

Batch Field Upgrade

Phoenix Tuner X allows the user to batch field upgrade from the Devices page. The user can
either select devices by their checkbox (in the top right corner of their respective card) or by
selecting the checkmark icon in the top right.

Tip: Selecting a device using their checkbox and clicking the checkmark in the top right will
select all devices of the same models

5.1. What is Phoenix Tuner X? 25

https://store.ctr-electronics.com/can-fd/

Phoenix Pro

Step 1 in the above image selects all devices of the same model (or all devices if no device is
currently check-boxed).
Step 2 in the above image opens the field-upgrade dialog.
Once the upgrade dialog is opened, information detailing the device name, model, ID, and
firmware version is presented. There is a Pro column that has a toggle. This toggle repre-
sents whether to upgrade to Pro or v5 firmware. If this toggle is disabled (as evident from
being greyed out), then there is no available Pro firmware for that device (TalonSRX, legacy
devices).

26 Chapter 5. Phoenix Tuner X

Phoenix Pro

The user can begin the upgrade progress by selecting Update to latest or Select firmware….
The first option will upgrade all listed devices to their latest available firmware (Pro or v5
depending on the toggle state). The second option will open a popup allowing you to select a
specific version or firmware file per model.

5.1. What is Phoenix Tuner X? 27

Phoenix Pro

Tip: Generally, users should update their devices to the latest available firmware version. If
manually selecting a CRF is important, the firmware files are available for download on our
GitHub Repo.

Important: While the user can cancel firmware upgrading using the “X” button in the top-
right, this will not cancel the current device in progress. It will finish upgrading the current
device and will not upgrade subsequent devices. Typical Tuner X behavior will resume once
the current device finishes flashing.

28 Chapter 5. Phoenix Tuner X

https://github.com/CrossTheRoadElec/Phoenix-Releases

Phoenix Pro

5.1.3 Device History

Users can access a list of past devices connected to Tuner X and license them via the Device
History page. This is accessible from the left-hand sidebar. This list is not automatically
refreshed, but users can refresh it by pressing the refresh icon in the top-right of the page.

Licensing from Device History

Users can activate a license for a disconnected device by clicking on the device in the Grid.
Then, select the “PRO” icon at the bottom right of the device card.

5.1. What is Phoenix Tuner X? 29

Phoenix Pro

From there, the user can activate a license for the device like normal. Once the device li-
cense has been activated, the user still needs to connect Tuner X to the robot to transfer the
activated license to the device.
The “PRO” icon may be replaced with a greyed “LIC” icon in the following situations:
• The device is on Phoenix 5 firmware AND actively connected to Tuner X
• The device is not a Pro compatible device

Users who license an eligible Pro device running Phoenix 5 firmware must update the device
firmware to Pro compatible firmware to utilize Pro features.

5.1.4 Device Details

The Device Details page can be accessed by clicking on the device card (or double clicking
on the device row when in grid view). This view allows you to access detailed device actions
such as:
• Device Details (Name, ID, Firmware Version, Model, Serial No, etc.)
• Blinking LEDs
• Field Upgrading
• Licensing Details (by clicking on the LIC/PRO icon)
• Configs

30 Chapter 5. Phoenix Tuner X

Phoenix Pro

• Control
• Self Tests
• Plotting
• Pigeon 2 Mount Calibration

Note: Plotting currently only works with Phoenix 5 devices.

Blinking

All CTR Electronics devices can be blinked (rapidly flash the LEDs). This can be useful for
handling whenever you have duplicate devices using the same ID on the CAN bus.

5.1. What is Phoenix Tuner X? 31

Phoenix Pro

Verifying Device Details

This screen highlights information such as (1) Device Name, (2) Device Model, (3) Firmware
Version.

Tip: Clicking in the blank space outside the detail frames will bring the user back to the
devices page.

32 Chapter 5. Phoenix Tuner X

Phoenix Pro

Configuring Name & IDs

All devices can have their Name (1) and ID (2) configured via their respective textbox. IDs
are limited to the range of 0 to 62 (inclusive). After inputting the ID or name, press the Set
button to save the changes to the device.

Field-Upgrade Firmware Version

Tuner X has improved firmware upgrading functionality by automatically downloading and
caching firmware. Upon initial Tuner X launch, the latest firmware for all devices will au-
tomatically be downloaded in the background (takes <10s on most internet connections).
The individual device page allows you to select specific firmware versions for your device via
the firmware dropdown. Batch firmware can also be completed via the batch field upgrade
pop-up.

Important: Users should ensure they select Phoenix Pro firmware when using Phoenix Pro
API, and Phoenix 5 firmware when using Phoenix 5 API. A single robot project may use both
APIs simultaneously.

5.1. What is Phoenix Tuner X? 33

Phoenix Pro

Users can switch between “Phoenix Pro” and “Phoenix 5” by clicking on the toggle above the
firmware dropdown.

Note: The toggle between Phoenix Pro and Phoenix 5 firmware only affects online field-
upgrades.

34 Chapter 5. Phoenix Tuner X

Phoenix Pro

5.1.5 Tuner Configs

Tip: Devices can also be configured in code.

Configs can be viewed, modified, backed-up, restored, and factory-reset via the Configs tab
in Phoenix Tuner X.

5.1. What is Phoenix Tuner X? 35

Phoenix Pro

To apply a modified config, press the Apply Configs button on the bottom button bar.

36 Chapter 5. Phoenix Tuner X

Phoenix Pro

5.1.6 Self Test Snapshot

Self Test Snapshot is a diagnostic feature of all supported devices that will show the immediate
state of the device. This is extremely useful for troubleshooting and ensuring the device is
working properly. Phoenix Pro with Phoenix Tuner X improves upon Self Test by showing the
information in clean tables, animations and detailed units.

Self Test also includes 3 buttons: Refresh, Blink/Clear Faults and Share to Support. Refresh
will refresh the Self Test information, Blink/Clear faults` will blink the device and clear any
faults on the device. Share to Support will open the default email client with an email to CTR
Electronics support.

5.1. What is Phoenix Tuner X? 37

Phoenix Pro

Viewing Status LEDs

Phoenix Pro devices report status LEDs as an animated GIF in Phoenix Tuner X. This can be
useful for diagnosing a device when it’s buried in a robot.

5.1.7 Plotting

Supported devices can have certain signals/sensor data plotted in real-time without any ad-
ditional configuration. To get started, click on the Plot button in the top right navigation
bar.

Tip: Plotting is supported in both Phoenix 5 and Phoenix Pro.

38 Chapter 5. Phoenix Tuner X

Phoenix Pro

At the top of this page is a list of supported values that can then be plotted. Click on the
signal that you wish to plot. Then click Enable Plot on the left.

5.1. What is Phoenix Tuner X? 39

Phoenix Pro

Adjusting Plotting Time Period

Plotting time period (the time frame that points are recorded) can be adjusted using the Time
Period textbox.

40 Chapter 5. Phoenix Tuner X

Phoenix Pro

Exporting Data

Plots can be exported into csv format for viewing in an external analysis tool. Click on the
Export as CSV button.

Plot Appearance & Behavior

Important: Scatter points may dramatically affect Tuner X performance.

Plotting supports zoom and panning via the mouse and scroll wheel (or via gestures on An-
droid). The point appearance can also be adjusted between “Spline” and “Scatter”.

5.1. What is Phoenix Tuner X? 41

Phoenix Pro

5.1.8 Pigeon 2.0 Calibration

It is recommended that calibration is performed once the Pigeon 2.0 has been mounted to
the robot. Calibration will calculate the optimal offsets to apply to ensure that Pose, Pitch
and Yaw is 0 when the robot is considered “flat”. Users can access the calibration menu by
clicking on the Pigeon 2.0 in Devices and clicking Calibration in the top right.

42 Chapter 5. Phoenix Tuner X

Phoenix Pro

Read through the on-screen instructions and click Begin Mount Calibration.

5.1. What is Phoenix Tuner X? 43

Phoenix Pro

44 Chapter 5. Phoenix Tuner X

6
TalonFX

The Falcon 500 powered by Talon FX is a brushless motor with an integrated motor controller
and high-resolution encoder, custom designed specifically for the FIRST Robotics Competi-
tion, through a collaboration between Cross the Road Electronics and VEX Robotics.
Store Page CAD, Firmware and purchase instructions.

Hardware User Manual Wiring and mount instructions in PDF format.

6.1 Actuator Limits

CTR Electronics actuators, such as the TalonFX, support various kinds of hardware and soft-
ware limits.
Documentation on retrieving and configuring limits can be found here.

6.1.1 Limit Switches

CTR Electronics supported actuators have limit features that will automatically neutral the
actuator output (set voltage to 0) if a limit switch is activated. By default, limits are set to
“normally open”. This means that the switch needs to be explicitly closed (or grounded) for
the actuator output to be set to neutral.
When the limit switch is closed (connected to ground), the actuator will disable and the pat-
tern will move toward the forward/reverse limit pin (red blink pattern will move toward the
forward limit pin when the forward limit is closed, and vice-versa).

Tip: For more information on limit switch wiring, consult the TalonFX User’s Guide.

45

https://www.vexrobotics.com/217-6515.html
https://store.ctr-electronics.com/content/user-manual/Falcon%20500%20User%20Guide.pdf

Phoenix Pro

6.2 Status Light Reference

LED State Description
Alternating
Off/Orange

Talon FX is disabled. Robot controller is missing on the bus or the
diagnostic server is not installed.

Simultaneous
Off/Orange

Talon FX is disabled. Phoenix is running in Robot Controller.

Alternating
Red/Green

Talon FX is not licensed. Please license device in Phoenix Tuner.

Off/Slow Red CAN/PWM is not detected.
Red/Orange Damaged Hardware
Off/Red Limit Switch or Soft Limit triggered.
Green/Orange Device is in bootloader.

46 Chapter 6. TalonFX

7
Pigeon 2.0

Pigeon 2.0 is the next evolution in the family of Pigeon IMUs.
With no on-boot calibration or temperature calibration required and dramatic improvement
to drift, the Pigeon is the easiest IMU to use yet.

7.1 Pigeon 2 Troubleshooting

A functional limitation was discovered in Pigeon 2s manufactured in September of 2022.
When used on a CANivore (CAN FD) Bus, the Pigeon 2 may not transmit CAN FD frames
correctly. As a result, you may find that all CAN device LEDs go red when the Pigeon 2 is
in-circuit and powered.
A firmware fix has been published, to update the firmware of an affected Pigeon 2, one of the
below options can be used.

7.1.1 Option 1: Workaround with Tuner X

Note: If you do not see the below option, then Tuner X is likely older than version
2023.1.5.0.

A new section in Tuner X Settings labeled Pigeon 2 Workaround has been added. When
the Execute Pigeon 2 workaround button is pressed, all CANivores will enter a special mode
that allows them to see the offending Pigeon 2s. This mode is reverted when the CANivore is
power cycled.

47

Phoenix Pro

Once the workaround has been applied, the device will show up in the Devices menu and
the LED should be alternating green/orange. Field-upgrade the firmware version and power
cycle the CANivore.

7.1.2 Option 2: Connect to the roboRIO Bus

Connect the Pigeon 2 to the roboRIO CAN Bus and field-upgrade the firmware version.

Note: We recommend power cycling Pigeon after moving CAN bus leads from CANivore to
roboRIO CAN bus to ensure a clean transition.

Store Page CAD, Firmware and purchase instructions.
Hardware User Manual Wiring and mount instructions in PDF format.

7.2 Status Light Reference

48 Chapter 7. Pigeon 2.0

Phoenix Pro

LED
Color

Blink Pattern Description

Off Pigeon 2.0 is not powered.
Yel-
low/Green

Only a single LED
will blink with this
pattern.

Device is in boot-loader, most likely because firmware upgrad-
ing has failed. Inspect CAN bus wiring and retry firmware up-
grading. If device has valid firmware, turn device off, wait 10
seconds, and turn device back on.

Red/GreenAlternating
Red/Green

Device is not licensed. License device in Phoenix Tuner.

Red/YellowLEDs are never off
- one of the two col-
ors are always il-
luminated

Hardware is damaged

Red
Blink

Check CAN bus health and connection to the Pigeon 2.0

Yel-
low

Alternate Blinking CAN bus detected but robot controller is not detected (or Pi-
geon 2.0 is not referenced in code)

Yel-
low

Simultaneous
Blinking

CAN bus detected, robot is disabled.

Green
Blink

CAN bus detected. Robot is enabled

7.3 Mount Calibration

It’s recommended to perform a mount calibration when placement of the Pigeon 2.0 has been
finalized. This can be done via the Calibration page in Tuner X.

7.3. Mount Calibration 49

Phoenix Pro

50 Chapter 7. Pigeon 2.0

8
CANcoder

Important: As of late August 2022, there are multiple hardware versions of CANcoder
available. This is due to the ongoing worldwide chip shortage causing CTR Electronics to
replace the original processor with a substitute. This new version of CANcoder requires a
different firmware, but is otherwise functionally identical to the original. Details on checking
the version can be found in the device details section.

The CANcoder is the next evolution in the line of CTRE magnetic encoder products. As its
name implies, this product is a rotary magnetic encoder that communicates over the CAN
bus. Supporting CAN FD and CAN 2.0, this product provides the same position and velocity
with the same resolutions you’ve come to expect from the SRX Magnetic Encoder.
Store Page CAD, Firmware and purchase instructions.

Hardware User Manual Wiring and mount instructions in PDF format.

8.1 Status Light Reference

Note: Users wishing to test magnet placement must wait 8 seconds after boot for the LEDs
to blink the magnet placement status.

51

Phoenix Pro

LED Color Led Brightness CAN bus Detec-
tion

Magnet Field
Strength

Description

Off • • • CANcoder
is not pow-
ered/plugged
in. Check
power cabling
to the CAN-
coder.

Yellow/Green Bright • • Device is in
boot-loader,
most likely be-
cause firmware
upgrading has
failed. In-
spect CAN bus
wiring and
retry firmware
upgrading. If
device has valid
firmware, turn
device off, wait
10 seconds,
and turn device
back on.

Slow Red Blink Bright CAN bus has
been lost. • Check CAN bus

health and con-
nection to the
CANcoder.

Red/Green Bright • • Device is not li-
censed. Please
license device
in Phoenix
Tuner.

Rapid Red Blink Dim CAN bus never
detected since
boot

<25mT or
>135mT

Magnet is out of
range

Rapid Yellow
Blink

Dim CAN bus never
detected since
boot

25-45mT or 75-
136mT

Magnet in
range with
slightly reduced
accuracy

Rapid Green
Blink

Dim CAN bus never
detected since
boot

Magnet in
range

Magnet in
range

Rapid Red Blink Bright CAN bus
present

<25mT or
>135mT

Magnet is out of
range

Rapid Yellow
Blink

Bright CAN bus
present

25-45mT or 75-
136mT

Magnet in
range with
slightly reduced
accuracy

Rapid Green
Blink

Bright CAN bus
present

Magnet in
range

Magnet in
range

52 Chapter 8. CANcoder

Phoenix Pro

8.2 Magnet Placement

Using the CANcoder User’s Guide, verify that magnet placement is correct for the CANcoder.

8.3 Verifying Sensor Direction

CANcoder sensor direction can be configured via the Config page in Phoenix Tuner X.

8.2. Magnet Placement 53

https://store.ctr-electronics.com/content/user-manual/CANCoder%20User's%20Guide.pdf

Phoenix Pro

54 Chapter 8. CANcoder

9
API Usage

This section serves to provide basic API usage for the Phoenix Pro API. For full details, please
visit the API docs (Java, C++).

Important: While Phoenix Pro and Phoenix 5 devices may exist on the same CAN bus and
same robot project, each robot projectmust use the API tied to the device firmware version.
This means Phoenix 5 devices must use the Phoenix 5 API, and Phoenix Pro devices must
use the Phoenix Pro API.

There are three major components to the Phoenix Pro API:
Configs Configs represent a persistent configuration for a device. For example, closed-
loop gains.

Control Requests Control Requests represent the output of a device, typically a
motor controller.

Signals Signals represent data retrieved from a device. This can be velocity,
position, yaw, pitch, roll, temperature, etc.

• API Overview
– Details a high level overview of what makes up the Phoenix Pro API.

• Configuration
– Describes configuring device configs via code.

• Control Requests
– Highlights using control requests to control the open and closed loop function-
ality of actuators such as the TalonFX.

• Status Signals
– Details using status signals to retrieve sensor data from devices.

• Device Faults
– Documents how faults are used to indicate device hardware status.

• Enabling Actuators

55

https://api.ctr-electronics.com/phoenixpro/release/java/
https://api.ctr-electronics.com/phoenixpro/release/cpp/

Phoenix Pro

– Information on the FRC Lock safety feature and enabling actuators.
• Actuator Limits

– Documents how to retrieve and configure software and hardware actuator limits.
• Device Specific

– Describes some device specific functionality, such as the different TalonFX con-
trol requests and how they are used.

• Migration Guide
– A “cheat sheet” on migrating from Phoenix 5 to Phoenix Pro.

9.1 API Overview

The Phoenix Pro API resides in the com.ctre.phoenixpro package in Java and the
ctre::phoenixpro namespace in C++. The API is then further organized into smaller pack-
ages and namespaces that group together similar types of classes and functions:
• configs - classes related to device configuration
• controls - classes related to device control
• hardware - the device hardware classes, such as TalonFX
• signals - enumeration types for device signals
• sim - classes related to device simulation

9.1.1 C++ IntelliSense

In C++, this namespace structure has the advantage of cleaning up IntelliSense when search-
ing for classes:

// first use the ctre::phoenixpro namespace
using namespace ctre::phoenixpro;

// now types are organized cleanly by namespace
hardware::TalonFX m_talonFX{0};
sim::TalonFXSimState& m_talonFXSim{m_talonFX.GetSimState()};

configs::TalonFXConfiguration m_talonFXConfig{};
signals::InvertedValue m_talonFXInverted{signals::InvertedValue::CounterClockwise_
↪→Positive};

controls::DutyCycleOut m_talonFXOut{0};

All C++ code examples in this documentation will assume the presence of using namespace
ctre::phoenixpro;.

56 Chapter 9. API Usage

Phoenix Pro

9.2 Configuration

Devices support persistent settings through the use of “configs”.

Tip: Configs can also be configured using Phoenix Tuner X. See Tuner Configs for more
information.

9.2.1 Configuration Objects

There are device-specific Configuration classes that group configuration data of devices in
a meaningful way. These classes are Passive Data Structures. One example is TalonFXCon-
figuration, which has subgroups of configs such as MotorOutputConfigs. The configs can
be modified through public member variables of the Configuration object. The complete list
of configuration objects can be found in the API documentation (Java, C++).

Java

var talonFXConfigs = new TalonFXConfiguration();

C++

configs::TalonFXConfiguration talonFXConfigs{};

Future Proofing Configs

There is a corner case with configs where the device may have firmware with newer configs
that didn’t exist when the version of the API was built. To account for this problem, device
Configuration objects have a FutureProofConfigs (Java, C++) field.

9.2.2 Configurator API

Device objects have a getConfigurator() method that returns a device-specific Configura-
tor object. The Configurator is used to retrieve, apply, and factory default the configs of a
device.

Note: This routine can be called frequently without any performance implications.

The device-specific configurators have type-specific overloads that allow for the widest variety
of device-compatible configs. As a result, the caller can pass the entire device Configuration
object or just the relevant subgroup of configs to the Configurator API.

9.2. Configuration 57

https://en.wikipedia.org/wiki/Passive_data_structure
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/configs/package-summary.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/namespacectre_1_1phoenixpro_1_1configs.html
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/configs/TalonFXConfiguration.html#FutureProofConfigs
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1configs_1_1_talon_f_x_configuration.html#af3d5b8b06c520c7d316573aac974546f

Phoenix Pro

Java

var talonFXConfigurator = m_talonFX.getConfigurator();

C++

auto& talonFXConfigurator = m_talonFX.GetConfigurator();

Reading Configs

To read configs stored in a device, use the refresh() method to update a Configuration
object. The example below demonstrates retrieving a full TalonFXConfiguration (Java, C++)
object from a TalonFX device.

Java

var talonFXConfigurator = m_talonFX.getConfigurator();
var talonFXConfigs = new TalonFXConfiguration();

// optional timeout (in seconds) as a second optional parameter
talonFXConfigurator.refresh(talonFXConfigs);

C++

auto& talonFXConfigurator = m_talonFX.GetConfigurator();
configs::TalonFXConfiguration talonFXConfigs{};

// optional timeout (in seconds) as a second optional parameter
talonFXConfigurator.Refresh(talonFXConfigs);

Applying Configs

Configs can be applied to a device by calling apply() on the Configurator with a Configu-
ration object.

Java

var talonFXConfigurator = m_talonFX.getConfigurator();
var motorConfigs = new MotorOutputConfigs();

// set invert to CW+ and apply config change
motorConfigs.Inverted = InvertedValue.Clockwise_Positive;
talonFXConfigurator.apply(motorConfigs);

58 Chapter 9. API Usage

https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/configs/TalonFXConfiguration.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1configs_1_1_talon_f_x_configuration.html

Phoenix Pro

C++

auto& talonFXConfigurator = m_talonFX.GetConfigurator();
configs::MotorOutputConfigs motorConfigs{};

// set invert to CW+ and apply config change
motorConfigs.Inverted = signals::InvertedValue::Clockwise_Positive;
talonFXConfigurator.Apply(motorConfigs);

Tip: To modify a single configuration value without affecting the other configs, users can
call refresh() after constructing the config object, or users can cache the config object and
reuse it for future calls to apply().

Factory Default

A newly-created Configuration object contains the default configuration values of a device.
Passing this newly-created Configuration object to the device Configurator will factory
default the device’s configs.

Java

m_talonFX.getConfigurator().apply(new TalonFXConfiguration());

C++

m_talonFX.GetConfigurator().Apply(configs::TalonFXConfiguration{});

9.3 Control Requests

Control Requests represent the output of a device. A list of control requests can be found in
the API docs (Java, C++).

Note: Phoenix Pro utilizes the C++ units library when applicable.

9.3. Control Requests 59

https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/controls/package-summary.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/namespacectre_1_1phoenixpro_1_1controls.html
https://docs.wpilib.org/en/stable/docs/software/basic-programming/cpp-units.html

Phoenix Pro

9.3.1 Applying a Control Request

Control requests can be applied by calling setControl() on the motor object. setControl()
returns a StatusCode (Java, C++) enum that represents success state. A successful request
will return StatusCode.OK.

Java

// Command m_motor to 100% of duty cycle
m_motor.setControl(new DutyCycleOut(1.0));

C++

// Command m_motor to 100% of duty cycle
m_motor.SetControl(controls::DutyCycleOut{1.0});

9.3.2 Modifying a Control Request

Control requests are mutable, so they can be saved in a member variable and reused. For
example, DutyCycleOut (Java, C++) has an Outputmember variable that can bemanipulated,
thus changing the output DutyCycle (proportion of supply voltage).

Note: Java users should reuse control requests to prevent excessive invocation of the
Garbage Collector.

Java

var motorRequest = new DutyCycleOut(0.0);

motorRequest.Output = 1.0;
m_motor.setControl(motorRequest);

C++

controls::DutyCycleOut motorRequest{0.0};

motorRequest.Output = 1.0;
m_motor.SetControl(motorRequest);

60 Chapter 9. API Usage

https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/StatusCode.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/_status_codes_8h.html
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/controls/DutyCycleOut.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1controls_1_1_duty_cycle_out.html

Phoenix Pro

Method Chaining API

Control requests also supports modification using method chaining. This can be useful for
mutating multiple values of a control request.

Java

// initialize torque current FOC request with 0 amps
var motorRequest = new TorqueCurrentFOC(0);

// mutate request with output of 10 amps and max duty cycle 0.5
m_motor.SetControl(motorRequest.withOutputAmps(10).withMaxDutyCycle(0.5));

C++

// initialize torque current FOC request with 0 amps
controls::TorqueCurrentFOC motorRequest{0_A};

// mutate request with output of 10 amps and max duty cycle 0.5
m_motor.SetControl(motorRequest.WithOutputAmps(10_A).WithMaxDutyCycle(0.5));

9.3.3 Changing Update Frequency

Control requests are automatically transmitted at a fixed update frequency. This update fre-
quency can bemodified by changing the UpdateFreqHz (Java, C++) field of the control request
before sending it to the device.

Java

// create a duty cycle request
var motorRequest = new DutyCycleOut(0);
// reduce the update frequency to 50 Hz
motorRequest.UpdateFreqHz = 50;

C++

// create a duty cycle request
controls::DutyCycleOut motorRequest{0};
// reduce the update frequency to 50 Hz
motorRequest.UpdateFreqHz = 50;

9.3. Control Requests 61

https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/controls/DutyCycleOut.html#UpdateFreqHz
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1controls_1_1_duty_cycle_out.html#a0045022bf2dbb33f1a4591d9b186b198

Phoenix Pro

9.4 Status Signals

Signals represent live data reported by a device; these can be yaw, position, etc. To make use
of the live data, users need to know the value, timestamp, latency, units, and error condition
of the data. Additionally, users may need to synchronize with fresh data to minimize latency.

9.4.1 StatusSignalValue

The StatusSignalValue (Java, C++) is a signal object that provides APIs to address all of the
requirements listed above.
The device object provides getters for all available signals. Each getter returns a StatusSig-
nalValue that is typed appropriately for the signal.

Note: The device getters return a cached StatusSignalValue. As a result, frequently calling
the getter does not influence RAM performance.

Java

var supplyVoltageSignal = m_device.getSupplyVoltage();

C++

auto& supplyVoltageSignal = m_device.GetSupplyVoltage();

The value of the signal can be retrieved from the StatusSignalValue by calling getValue().

Java

var supplyVoltage = supplyVoltageSignal.getValue();

C++

auto supplyVoltage = supplyVoltageSignal.GetValue();

Note: Phoenix Pro utilizes the C++ units library when applicable.

The StatusCode (Java, C++) of the signal can be retrieved by calling getError(). This can
be used to determine if the device is not present on the CAN bus.

Note: If a status signal is not available on the CAN bus, an error will be reported to the
Driver Station.

62 Chapter 9. API Usage

https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/StatusSignalValue.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1_status_signal_value.html
https://docs.wpilib.org/en/stable/docs/software/basic-programming/cpp-units.html
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/StatusCode.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/_status_codes_8h.html#a1edbab973bc8d4d5097a6bcc17c88c19

Phoenix Pro

Refreshing the Signal Value

The device StatusSignalValue getters implicitly refresh the cached signal values. However,
if the user application caches the StatusSignalValue object, the refresh()method must be
called to fetch fresh data.

Tip: The refresh() method can be method-chained. As a result, you can call refresh()
and getValue() on one line.

Java

supplyVoltageSignal.refresh();

C++

supplyVoltageSignal.Refresh();

Waiting for Signal Updates

Instead of using the latest value, the user can instead opt to synchronously wait for a signal
update. StatusSignalValue provides a waitForUpdate(timeoutSec) method that will block
the current robot loop until the signal is retrieved or the timeout has been exceeded. This
replaces the need to call refresh() on cached StatusSignalValue objects.

Tip: If you want to zero your sensors, you can use this API to ensure the set operation has
completed before continuing program flow.

Tip: The waitForUpdate() method can be method-chained. As a result, you can call wait-
ForUpdate() and getValue() on one line.

Java

// wait up to 1 robot loop iteration (20ms) for fresh data
supplyVoltageSignal.waitForUpdate(0.020);

9.4. Status Signals 63

Phoenix Pro

C++

// wait up to 1 robot loop iteration (20ms) for fresh data
supplyVoltageSignal.WaitForUpdate(20_ms);

Changing Update Frequency

All signals can have their update frequency configured via the setUpdateFrequency()
method.

Warning: Increasing signal frequency will also increase CAN bus utilization, which can
cause indeterminate behavior at high utilization rates (>90%). This is less of a concern
when using CANivore, which uses the higher-bandwidth CAN FD bus.

Java

// slow down supply voltage reporting to 10 Hz
supplyVoltageSignal.setUpdateFrequency(10);

C++

// slow down supply voltage reporting to 10 Hz
supplyVoltageSignal.SetUpdateFrequency(10_Hz);

Timestamps

The timestamps of a StatusSignalValue can be retrieved by calling getAllTimestamps(),
which returns a collection of Timestamp (Java, C++) objects. The Timestamp objects can be
used to perform latency compensation math.

9.4.2 CANivore Timesync

When using CANivore, the attached CAN devices will automatically synchronize their time
bases. This allows devices to sample and publish their signals in a synchronized manner.
Users can synchronously wait for these signals to update using BaseStatusSignalValue.
waitForAll() (Java, C++).

Tip: waitForAll() can be used with a timeout of zero to perform a non-blocking refresh on
all signals passed in.

Because the devices are synchronized, time-critical signals are sampled and published on
the same schedule. This combined with the waitForAll() routine means applications can
considerably reduce the latency of the timesync signals. This is particularly useful for multi-
device mechanisms, such as swerve odometry.

64 Chapter 9. API Usage

https://store.ctr-electronics.com/can-fd/
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/Timestamp.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1_timestamp.html
https://store.ctr-electronics.com/canivore/
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/BaseStatusSignalValue.html#waitForAll(double,com.ctre.phoenixpro.BaseStatusSignalValue...)
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1_base_status_signal_value.html#ae9772b2fe2934d261d6daf242b9ab1de

Phoenix Pro

Note: When using a non-zero timeout, the signals passed into waitForAll() should have
the same update frequency for synchronous data acquisition. This can be done by calling
setUpdateFrequency() or by referring to the API documentation.

The following signals are time-synchronized:
• TalonFX

– All Signals
• CANcoder

– All Signals
• Pigeon 2.0

– Yaw, Pitch, & Roll
– Quaternion
– Gravity Vector
– Accum Gyro
– Angular Rate
– Accelerometer
– Temperature

Java

var talonFXPositionSignal = m_talonFX.getPosition();
var cancoderPositionSignal = m_cancoder.getPosition();
var pigeon2YawSignal = m_pigeon2.getYaw();

BaseStatusSignalValue.waitForAll(0.020, talonFXPositionSignal, cancoderPositionSignal,
↪→ pigeon2YawSignal);

C++

auto& talonFXPositionSignal = m_talonFX.GetPosition();
auto& cancoderPositionSignal = m_cancoder.GetPosition();
auto& pigeon2YawSignal = m_pigeon2.GetYaw();

BaseStatusSignalValue::WaitForAll(20_ms, {&talonFXPositionSignal, &
↪→cancoderPositionSignal, &pigeon2YawSignal});

9.4. Status Signals 65

Phoenix Pro

9.4.3 Latency Compensation

Users can perform latency compensation using BaseStatusSignalValue.
getLatencyCompensatedValue() (Java, C++).

Important: getLatencyCompensatedValue() does not automatically refresh the signals. As
a result, the user must ensure the signal and signalSlope parameters are refreshed before
retrieving a compensated value.

Java

double compensatedTurns = BaseStatusSignalValue.getLatencyCompensatedValue(m_motor.
↪→getPosition(), m_motor.getVelocity());

C++

auto compensatedTurns = BaseStatusSignalValue::GetLatencyCompensatedValue(m_motor.
↪→GetPosition(), m_motor.GetVelocity());

9.4.4 SignalMeasurement

All StatusSignalValue objects have a getDataCopy()method that returns a new SignalMea-
surement (Java, C++) object. SignalMeasurement is a Passive Data Structure that provides
all the information about a signal at the time of the getDataCopy() call, which can be useful
for data logging.

Warning: getDataCopy() returns a new SignalMeasurement object every call. Java
users should avoid using this API in RAM-constrained applications.

9.5 Device Faults

“Faults” are status indicators on CTR Electronics CAN devices that indicate a certain behavior
or event has occurred. Faults do not directly affect the behavior of a device; instead, they
indicate the device’s current status and highlight potential issues.
Faults are stored in two fashions. There are “live” faults, which are reported in real-time, and
“sticky” faults, which assert persistently and stay asserted until they are manually cleared
(like trouble codes in a vehicle).
Sticky Faults can be cleared by clicking the Blink/Clear Faults button in Phoenix Tuner X, or
by calling clearStickyFaults() on the device in the robot program. A regular fault can only
be cleared when the offending problem has been resolved.

66 Chapter 9. API Usage

https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/BaseStatusSignalValue.html#getLatencyCompensatedValue(com.ctre.phoenixpro.StatusSignalValue,com.ctre.phoenixpro.StatusSignalValue)
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1_base_status_signal_value.html#a22f020db5abbf556ac7605024309bb26
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/StatusSignalValue.SignalMeasurement.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/structctre_1_1phoenixpro_1_1_signal_measurement.html
https://en.wikipedia.org/wiki/Passive_data_structure

Phoenix Pro

9.5.1 Using API to Retrieve Faults

Faults can also be retrieved in API using the getFault_*() (regular) or getStickyFault_*()
(sticky) methods on the device object. This can be useful for diagnostics or error handling.

Java

var faulted = m_cancoder.getFault_BadMagnet().getValue();

if (faulted) {
// do action when bad magnet fault is set

}

9.5. Device Faults 67

Phoenix Pro

C++

auto faulted = m_cancoder.GetFault_BadMagnet().GetValue();

if (faulted) {
// do action when bad magnet fault is set

}

A list of possible faults can be found in the API documentation for each device.

9.6 Enabling Actuators

CTR Electronics supported actuators have a safety feature where they will automatically dis-
able output if they have not recently received an enable signal.

9.6.1 FRC Applications

In FRC applications, the enable signal is automatically sent to devices based on the Driver
Station enable signal. This includes controlling devices in Phoenix Tuner X.

Warning: The device FRC Lock must be cleared to control devices in hardware-attached
simulation.

9.6.2 Non-FRC Applications

In non-FRC applications, Unmanaged.feedEnable() must be called periodically to enable
actuators.

Warning: The device FRC Lock must be cleared to control devices.

Java

// feed the enable signal, timeout after 100ms
Unmanaged.feedEnable(100);

68 Chapter 9. API Usage

Phoenix Pro

C++

// feed the enable signal, timeout after 100ms
unmanaged::FeedEnable(100);

This must also be called to control devices in Phoenix Tuner X.

Tip: The Tuner X CANivore USB server automatically calls Unmanaged.feedEnable() when
control is enabled.

9.6.3 FRC Lock

When a device is connected to a roboRIO for use in FRC, the device becomes FRC-locked and
will require the Driver Station enable signal for actuation. The device FRC lock can be reset
by factory-defaulting the device in Phoenix Tuner X.

9.7 Actuator Limits

CTR Electronics actuators, such as the TalonFX, support various kinds of hardware and soft-
ware limits.
Documentation on wiring limit switches can be found here.

9.7.1 Retrieving Limit Switch State

The state of the forward or reverse limit switch can be retrieved from the API via getFor-
wardLimit() and getReverseLimit().

Java

var forwardLimit = m_motor.getForwardLimit();

if (forwardLimit.getValue() == ForwardLimitValue.ClosedToGround) {
// do action when forward limit is closed

}

C++

auto& forwardLimit = m_motor.GetForwardLimit();

if (forwardLimit.GetValue() == signals::ForwardLimitValue::ClosedToGround) {
// do action when forward limit is closed

}

9.7. Actuator Limits 69

Phoenix Pro

9.8 Device Specific

This section is intended to highlight any device specific API functionality. This include features
such as the TalonFX + CANcoder fusion, details on using TalonFX Control Requests and more.

9.8.1 TalonFX

Introduction to TalonFX Control

The TalonFX has a variety of open-loop and closed-loop control requests and supports Field
Oriented Control.

Control Output Types

The TalonFX supports three base control output types: DutyCycle, Voltage, and TorqueCur-
rentFOC.

DutyCycle

ADutyCycle control request outputs a proportion of the supply voltage, which typically ranges
from -1.0 to 1.0, inclusive. This control output type is typically used in systems where it is
important to be capable of running at the maximum speed possible, such as in a typical robot
drivetrain.

Voltage

A Voltage control request directly controls the output voltage of the motor. The output voltage
is capped by the supply voltage to the device. Since the output of a Voltage control request is
typically unaffected by the supply voltage, this control output type results in more stable and
reproducible behavior than a DutyCycle control request.

TorqueCurrentFOC

A TorqueCurrentFOC control request uses Field Oriented Control to directly control the out-
put current of the motor. Unlike the other control output types, where output roughly controls
the velocity of the motor, a TorqueCurrentFOC request controls the acceleration of the mo-
tor.

70 Chapter 9. API Usage

Phoenix Pro

Field Oriented Control

Field Oriented Control (FOC) is a commutation mode that increases peak power by ~15%.
All control modes that optionally support FOC have an EnableFOC field (Java, C++). There
are also control types that require FOC, such as TorqueCurrentFOC.

Open-Loop Control

Open-Loop control typically refers to directly controlling device output.
There are open-loop control requests for all TalonFX control output types. With the excep-
tion of FOC-only control requests, all open-loop control requests follow the naming pattern
{ControlOutputType}Out. For example, the open-loop Voltage control request is called Volt-
ageOut. FOC-only control requests follow the naming pattern {ControlOutputType}.

Java

// users should reuse control requests when possible
var leftRequest = new DutyCycleOut(0.0);
var rightRequest = new DutyCycleOut(0.0);

// retrieve joystick inputs
var forward = -m_driverJoy.getLeftY();
var turn = m_driverJoy.getRightX();

// calculate motor outputs, utilizes a "arcade" style of driving;
// where left Y controls forward and right X controls rotation/turn
var leftOut = forward + turn;
var rightOut = forward - turn;

// set request to motor controller
m_leftLeader.setControl(leftRequest.withOutput(leftOut));
m_rightLeader.setControl(rightRequest.withOutput(rightOut));

C++

// users should reuse control requests when possible
controls::DutyCycleOut leftRequest{0.0};
controls::DutyCycleOut rightRequest{0.0};

// retrieve joystick inputs
auto forward = -m_driverJoy.GetLeftY();
auto turn = m_driverJoy.GetRightX();

// calculate motor outputs, utilizes a "arcade" style of driving;
// where left Y controls forward and right X controls rotation/turn
auto leftOut = forward + turn;
auto rightOut = forward - turn;

// set request to motor controller
m_leftLeader.SetControl(leftRequest.WithOutput(leftOut));
m_rightLeader.SetControl(rightRequest.WithOutput(rightOut));

9.8. Device Specific 71

https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/controls/DutyCycleOut.html#EnableFOC
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1controls_1_1_duty_cycle_out.html#abfe71dea214ab5a262bc116d6292dd76

Phoenix Pro

Closed-Loop Control

Closed-loop control typically refers to control of a motor that relies on sensor data to adjust
based on error. Systems/mechanisms that rely on maintaining a certain position or velocity
achieve this state using closed-loop control. This is achieved by feedback (PID) and feedfor-
ward control. Closed-loop control can be performed on the robot controller or on the individ-
ual motor controllers. The benefit of onboard closed-loop control is that there is no sensor
latency and 1 kHz update frequency. This can result in a more responsive output compared
to running the closed-loop on the robot controller.
Since closed-loop control changes based on the dynamics of the system (velocity, mass, CoG,
etc.), closed-loop relies on PID and feedforward parameters. These parameters are config-
ured either via Tuner Configs or in code. The parameters can be determined using System
Identification (such as with WPILib SysID) or through manual tuning.
Manual tuning typically follows this process:
1. Set Kp, Ki and Kd to zero.
2. Increase Kp until the output starts to oscillate around the setpoint.
3. Increase Kd as much as possible without introducing jittering to the response.

All closed-loop control requests follow the naming pattern {ClosedLoop-
Mode}{ControlOutputType}. For example, the VelocityVoltage control request performs a
velocity closed-loop using voltage output.

Gain Slots

It may be useful to switch between presets of gains in a motor controller, so the TalonFX
supports multiple gain slots. All closed-loop control requests have a member variable Slot
that can be assigned an integer ID to select the set of gains used by the closed-loop. The gain
slots can be configured in code using Slot*Configs (Java, C++) objects.

Velocity Control

A Velocity closed loop can be used to maintain a target velocity (in rotations per second). This
can be useful for controlling flywheels, where a velocity needs to be maintained for accurate
shooting.
Velocity closed loop is currently supported for all base control output types. The units of the
output is determined by the control output type.
In a Velocity closed loop, the gains should be configured as follows:
• Ks - output to overcome static friction (output)
• Kv - output per unit of requested velocity (output/rps)
• Kp - output per unit of error in velocity (output/rps)
• Ki - output per unit of integrated error in velocity (output/rotation)
• Kd - output per unit of error derivative in velocity (output/(rps/s))

72 Chapter 9. API Usage

https://docs.wpilib.org/en/stable/docs/software/advanced-controls/introduction/introduction-to-pid.html
https://docs.wpilib.org/en/stable/docs/software/advanced-controls/introduction/introduction-to-feedforward.html
https://docs.wpilib.org/en/stable/docs/software/advanced-controls/introduction/introduction-to-feedforward.html
https://docs.wpilib.org/en/stable/docs/software/pathplanning/system-identification/introduction.html
https://docs.wpilib.org/en/stable/docs/software/advanced-controls/introduction/tutorial-intro.html
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/configs/Slot0Configs.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1configs_1_1_slot0_configs.html

Phoenix Pro

Java

// in init function, set slot 0 gains
var slot0Configs = new Slot0Configs();
slot0Configs.kS = 0.05; // Add 0.05 V output to overcome static friction
slot0Configs.kV = 0.12; // A velocity target of 1 rps results in 0.12 V output
slot0Configs.kP = 0.11; // An error of 1 rps results in 0.11 V output
slot0Configs.kI = 0.5; // An error of 1 rps increases output by 0.5 V each second
slot0Configs.kD = 0.01; // An acceleration of 1 rps/s results in 0.01 V output

m_talonFX.getConfigurator().apply(slot0Configs);

C++

// in init function, set slot 0 gains
configs::Slot0Configs slot0Configs{};
slot0Configs.kS = 0.05; // Add 0.05 V output to overcome static friction
slot0Configs.kV = 0.12; // A velocity target of 1 rps results in 0.12 V output
slot0Configs.kP = 0.11; // An error of 1 rps results in 0.11 V output
slot0Configs.kI = 0.5; // An error of 1 rps increases output by 0.5 V each second
slot0Configs.kD = 0.01; // An acceleration of 1 rps/s results in 0.01 V output

m_talonFX.GetConfigurator().Apply(slot0Configs);

Once the gains are configured, the Velocity closed loop control request can be sent to the
TalonFX. The control request object has an optional feedforward term that can be used to
add an arbitrary value to the output, which can be useful to account for the effects of gravity.

Java

// create a velocity closed-loop request, voltage output, slot 0 configs
var request = new VelocityVoltage(0).withSlot(0);

// set velocity to 8 rps, add 0.5 V to overcome gravity
m_talonFX.setControl(request.withVelocity(8).withFeedForward(0.5));

C++

// create a velocity closed-loop request, voltage output, slot 0 configs
auto request = controls::VelocityVoltage{0_tps}.WithSlot(0);

// set velocity to 8 rps, add 0.5 V to overcome gravity
m_talonFX.SetControl(request.WithVelocity(8_tps).WithFeedForward(0.5_V));

9.8. Device Specific 73

Phoenix Pro

Converting from Meters

In some applications, it may be useful to translate between meters and rotations. This can be
done using the following equation:

rotations =
meters

π · wheelDiameter
· gearRatio

where meters is the target in meters, wheelDiameter is the diameter of the wheel in meters,
and gearRatio is the gear ratio between the output shaft and the wheel.
This equation also works with converting velocity from m/s to rps.

Position Control

A Position closed loop can be used to target a specified motor position (in rotations).
Position closed loop is currently supported for all base control output types. The units of the
output is determined by the control output type.
In a Position closed loop, the gains should be configured as follows:
• Ks - unused, as there is no target velocity
• Kv - unused, as there is no target velocity
• Kp - output per unit of error in position (output/rotation)
• Ki - output per unit of integrated error in position (output/(rotation*s))
• Kd - output per unit of error derivative in position (output/rps)

Java

// in init function, set slot 0 gains
var slot0Configs = new Slot0Configs();
slot0Configs.kP = 24; // An error of 0.5 rotations results in 12 V output
slot0Configs.kI = 0; // no output for integrated error
slot0Configs.kD = 0.1; // A velocity of 1 rps results in 0.1 V output

m_talonFX.getConfigurator().apply(slot0Configs);

C++

// in init function, set slot 0 gains
configs::Slot0Configs slot0Configs{};
slot0Configs.kP = 24; // An error of 0.5 rotations results in 12 V output
slot0Configs.kI = 0; // no output for integrated error
slot0Configs.kD = 0.1; // A velocity of 1 rps results in 0.1 V output

m_talonFX.GetConfigurator().Apply(slot0Configs);

Once the gains are configured, the Position closed loop control request can be sent to the
TalonFX. The control request object has an optional feedforward term that can be used to
add an arbitrary value to the output, which can be useful to account for the effects of gravity
or friction.

74 Chapter 9. API Usage

Phoenix Pro

Java

// create a position closed-loop request, voltage output, slot 0 configs
var request = new PositionVoltage(0).withSlot(0);

// set position to 10 rotations
m_talonFX.setControl(request.withPosition(10));

C++

// create a position closed-loop request, voltage output, slot 0 configs
auto request = controls::PositionVoltage{0_tr}.WithSlot(0);

// set position to 10 rotations
m_talonFX.SetControl(request.WithPosition(10_tr));

Motion Magic®

MotionMagic® is a control mode that provides the benefit ofMotion Profilingwithout needing
to generate motion profile trajectory points. When usingMotionMagic®, the motor will move
to a target position using a motion profile, while honoring the user specified acceleration,
maximum velocity (cruise velocity), and optional jerk.
The benefits of this control mode over “simple” PID position closed-looping are:
• Control of the mechanism throughout the entire motion (as opposed to racing to the end
target position)

• Control of the mechanism’s inertia to ensure smooth transitions between set points
• Improved repeatability despite changes in battery load
• Improved repeatability despite changes in motor load

After gain/settings are determined, the robot controller only needs to periodically set the
target position.
There is no general requirement to “wait for the profile to finish”. However, the robot appli-
cation can poll the sensor position and determine when the motion is finished if need be.
Motion Magic® functions by generating a trapezoidal/S-Curve velocity profile that does not
exceed the specified cruise velocity, acceleration, or jerk. This is done automatically by the
motor controller.

Note: If the remaining sensor distance to travel is small, the velocity may not reach cruise
velocity as this would overshoot the target position. This is often referred to as a “triangle
profile”.

9.8. Device Specific 75

Phoenix Pro

If the Motion Magic® jerk is set to a nonzero value, the generated velocity profile is no longer
trapezoidal, but instead is a continuous S-Curve (corner points are smoothed).
An S-Curve profile has the following advantaged over a trapezoidal profile:
• Reducing oscillation of the mechanism.
• Maneuver is more deliberate and reproducible.

Note: The jerk control feature, by its nature, will increase the amount of time a movement
requires. This can be compensated for by increasing the configured acceleration value.

The following parameters must be set when controlling using Motion Magic®

76 Chapter 9. API Usage

Phoenix Pro

• Cruise Velocity - peak/cruising velocity of the motion
• Acceleration - controls acceleration and deceleration rates during the beginning and end
of motion

• Jerk - controls jerk, which is the derivative of acceleration

Using Motion Magic® in API

Motion Magic® is currently supported for all base control output types. The units of the
output is determined by the control output type.
The Motion Magic® jerk, acceleration, and cruise velocity can be configured in code using a
MotionMagicConfigs (Java, C++) object.
In Motion Magic®, the gains should be configured as follows:
• Ks - output to overcome static friction (output)
• Kv - output per unit of target velocity (output/rps)
• Kp - output per unit of error in position (output/rotation)
• Ki - output per unit of integrated error in position (output/(rotation*s))
• Kd - output per unit of error in velocity (output/rps)

Java

// in init function
var talonFXConfigs = new TalonFXConfiguration();

// set slot 0 gains
var slot0Configs = talonFXConfigs.Slot0Configs;
slot0Configs.kS = 0.25; // Add 0.25 V output to overcome static friction
slot0Configs.kV = 0.12; // A velocity target of 1 rps results in 0.12 V output
slot0Configs.kP = 4.8; // A position error of 2.5 rotations results in 12 V output
slot0Configs.kI = 0; // no output for integrated error
slot0Configs.kD = 0.1; // A velocity error of 1 rps results in 0.1 V output

// set Motion Magic settings
var motionMagicConfigs = talonFXConfigs.MotionMagicConfigs;
motionMagicConfigs.MotionMagicCruiseVelocity = 80; // Target cruise velocity of 80 rps
motionMagicConfigs.MotionMagicAcceleration = 160; // Target acceleration of 160 rps/s␣
↪→(0.5 seconds)
motionMagicConfigs.MotionMagicJerk = 1600; // Target jerk of 1600 rps/s/s (0.1␣
↪→seconds)

m_talonFX.getConfigurator().apply(talonFXConfigs);

9.8. Device Specific 77

https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/configs/MotionMagicConfigs.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1configs_1_1_motion_magic_configs.html

Phoenix Pro

C++

// in init function
configs::TalonFXConfiguration talonFXConfigs{};

// set slot 0 gains
auto& slot0Configs = talonFXConfigs.Slot0Configs;
slot0Configs.kS = 0.25; // Add 0.25 V output to overcome static friction
slot0Configs.kV = 0.12; // A velocity target of 1 rps results in 0.12 V output
slot0Configs.kP = 4.8; // A position error of 2.5 rotations results in 12 V output
slot0Configs.kI = 0; // no output for integrated error
slot0Configs.kD = 0.1; // A velocity error of 1 rps results in 0.1 V output

// set Motion Magic settings
auto& motionMagicConfigs = talonFXConfigs.MotionMagicConfigs;
motionMagicConfigs.MotionMagicCruiseVelocity = 80; // Target cruise velocity of 80 rps
motionMagicConfigs.MotionMagicAcceleration = 160; // Target acceleration of 160 rps/s␣
↪→(0.5 seconds)
motionMagicConfigs.MotionMagicJerk = 1600; // Target jerk of 1600 rps/s/s (0.1␣
↪→seconds)

m_talonFX.GetConfigurator().Apply(talonFXConfigs);

Tip: Motion Magic® supports modifying jerk and acceleration on the fly (requires firmware
version 23.6.10.1 or newer).

Once the gains are configured, the Motion Magic® request can be sent to the TalonFX. The
control request object has an optional feedforward term that can be used to add an arbitrary
value to the output, which can be useful to account for the effects of gravity.

Java

// create a Motion Magic request, voltage output, slot 0 configs
var request = new MotionMagicVoltage(0).withSlot(0);

// set position to 10 rotations
m_talonFX.setControl(request.withPosition(10));

C++

// create a Motion Magic request, voltage output, slot 0 configs
auto request = controls::MotionMagicVoltage{0_tr}.WithSlot(0);

// set position to 10 rotations
m_talonFX.SetControl(request.WithPosition(10_tr));

78 Chapter 9. API Usage

Phoenix Pro

TalonFX Remote Sensors

The TalonFX supports various remote sensors. Remote sensors allow onboard closed-loop
functionality at rates faster than a traditional robot processor (~1Khz) by reading the remote
sensor directly from the CAN bus. This allows supported motor controllers to execute closed-
loop modes with sensor values sourced by supported sensors.
A list of supported remote sensors can be found in the API docs (Java, C++).
Remote sensors can be configured using Tuner X or via code. This document highlights how
to configure a remote sensor in a robot program.

RemoteCANcoder

A supported motor controller will update its position and velocity whenever the CANcoder
publishes its information on the CAN bus.

Java

var fx_cfg = new TalonFXConfiguration();
fx_cfg.Feedback.FeedbackRemoteSensorID = m_cancoder.getDeviceID();
fx_cfg.Feedback.FeedbackSensorSource = FeedbackSensorSourceValue.FusedCANcoder;

m_talonFX.getConfigurator().apply(fx_cfg);

C++

configs::TalonFXConfiguration fx_cfg{};
fx_cfg.Feedback.FeedbackRemoteSensorID = m_cancoder.GetDeviceID();
fx_cfg.Feedback.FeedbackSensorSource =␣
↪→signals::FeedbackSensorSourceValue::FusedCANcoder;

m_talonFX.GetConfigurator().Apply(fx_cfg);

FusedCANcoder

New in Phoenix Pro is a feedback sensor type called FusedCANcoder. FusedCANcoder will
fuse another CANcoder’s information with the motor’s internal rotor, which provides the best
possible position and velocity for accuracy and bandwidth. This is useful in applications such
as swerve azimuth.
FusedCANcoder requires the configuration of several Feedback config group items, shown
below.
Full example: Java, C++

9.8. Device Specific 79

https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/signals/FeedbackSensorSourceValue.html#RotorSensor
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1signals_1_1_feedback_sensor_source_value.html#a979a876fbd8ed78729c94dd799327be4
https://github.com/CrossTheRoadElec/PhoenixPro-Examples/blob/main/java/FusedCANcoder/src/main/java/frc/robot/Robot.java
https://github.com/CrossTheRoadElec/PhoenixPro-Examples/blob/main/cpp/FusedCANcoder/src/main/cpp/Robot.cpp

Phoenix Pro

Java

51 /* Configure CANcoder to zero the magnet appropriately */
52 CANcoderConfiguration cc_cfg = new CANcoderConfiguration();
53 cc_cfg.MagnetSensor.AbsoluteSensorRange = AbsoluteSensorRangeValue.Signed_

↪→PlusMinusHalf;
54 cc_cfg.MagnetSensor.SensorDirection = SensorDirectionValue.CounterClockwise_

↪→Positive;
55 cc_cfg.MagnetSensor.MagnetOffset = 0.4;
56 m_cc.getConfigurator().apply(cc_cfg);
57

58 TalonFXConfiguration fx_cfg = new TalonFXConfiguration();
59 fx_cfg.Feedback.FeedbackRemoteSensorID = m_cc.getDeviceID();
60 fx_cfg.Feedback.FeedbackSensorSource = FeedbackSensorSourceValue.FusedCANcoder;
61 fx_cfg.Feedback.SensorToMechanismRatio = 1.0;
62 fx_cfg.Feedback.RotorToSensorRatio = 12.8;
63

64 m_fx.getConfigurator().apply(fx_cfg);

C++

11 /* Configure CANcoder to zero the magnet appropriately */
12 configs::CANcoderConfiguration cc_cfg{};
13 cc_cfg.MagnetSensor.AbsoluteSensorRange = signals::AbsoluteSensorRangeValue::Signed_

↪→PlusMinusHalf;
14 cc_cfg.MagnetSensor.SensorDirection =␣

↪→signals::SensorDirectionValue::CounterClockwise_Positive;
15 cc_cfg.MagnetSensor.MagnetOffset = 0.4;
16 m_cc.GetConfigurator().Apply(cc_cfg);
17

18 configs::TalonFXConfiguration fx_cfg{};
19 fx_cfg.Feedback.FeedbackRemoteSensorID = m_cc.GetDeviceID();
20 fx_cfg.Feedback.FeedbackSensorSource =␣

↪→signals::FeedbackSensorSourceValue::FusedCANcoder;
21 fx_cfg.Feedback.SensorToMechanismRatio = 1.0;
22 fx_cfg.Feedback.RotorToSensorRatio = 12.8;
23

24 m_fx.GetConfigurator().Apply(fx_cfg);

Usage is the same as any status signal:

Java

fx_pos.refresh();
cc_pos.refresh();

System.out.println("FX Position: " + fx_pos.toString());
System.out.println("CANcoder Position: " + cc_pos.toString());

80 Chapter 9. API Usage

Phoenix Pro

C++

fx_pos.Refresh();
cc_pos.Refresh();

std::cout << "FX Position: " << fx_pos << std::endl;
std::cout << "CANcoder Position: " << cc_pos << std::endl;

9.9 Migration Guide

This section serves as a “cheat sheet” of commonly-used functions in Phoenix 5 and their
equivalents in Phoenix Pro.
• Configuration

– Configuring device configs in robot code
• Status Signals

– Using status signals to retrieve sensor data from devices
• Control Requests

– Using control requests to control the functionality of actuators, such as the
TalonFX

• Closed-Loop Control
– Configuring and using closed-loop control requests

• Feature Replacements
– Other features replaced or improved upon in Phoenix Pro

9.9.1 Configuration

Phoenix Pro simplifies the configuration process through the use of device-specific Configu-
ration classes, as well as configuration groups.

9.9. Migration Guide 81

Phoenix Pro

Applying Configs

v5
Java

// set slot 0 gains
// 50 ms timeout on each config call
m_motor.config_kF(0, 0.05, 50);
m_motor.config_kP(0, 0.046, 50);
m_motor.config_kI(0, 0.0002, 50);
m_motor.config_kD(0, 0.42, 50);

C++

// set slot 0 gains
// 50 ms timeout on each config call
m_motor.Config_kF(0, 0.05, 50);
m_motor.Config_kP(0, 0.046, 50);
m_motor.Config_kI(0, 0.0002, 50);
m_motor.Config_kD(0, 0.42, 50);

Pro
Java

// set slot 0 gains
var slot0Configs = new Slot0Configs();
slot0Configs.kV = 0.12;
slot0Configs.kP = 0.11;
slot0Configs.kI = 0.5;
slot0Configs.kD = 0.001;

// apply gains, 50 ms total timeout
m_talonFX.getConfigurator().apply(slot0Configs, 0.050);

C++

// set slot 0 gains
configs::Slot0Configs slot0Configs{};
slot0Configs.kV = 0.12;
slot0Configs.kP = 0.11;
slot0Configs.kI = 0.5;
slot0Configs.kD = 0.001;

// apply gains, 50 ms total timeout
m_talonFX.GetConfigurator().Apply(slot0Configs, 50_ms);

82 Chapter 9. API Usage

Phoenix Pro

Factory Defaulting Configs

v5
Java

// user must remember to factory default if they configure devices in code
m_motor.configFactoryDefault();

C++

// user must remember to factory default if they configure devices in code
m_motor.ConfigFactoryDefault();

Pro
Java

// any unmodified configs in a configuration object are *automatically* factory-
↪→defaulted;
// user can perform a full factory default by passing a new device configuration␣
↪→object
m_motor.getConfigurator().apply(new TalonFXConfiguration());

C++

// any unmodified configs in a configuration object are *automatically* factory-
↪→defaulted;
// user can perform a full factory default by passing a new device configuration␣
↪→object
m_motor.GetConfigurator().Apply(TalonFXConfiguration{});

9.9. Migration Guide 83

Phoenix Pro

Retrieving Configs

v5
Java

// a limited number of configs have configGet* methods;
// for example, you can get the supply current limits
var supplyCurLim = new SupplyCurrentLimitConfiguration();
m_motor.configGetSupplyCurrentLimit(supplyCurLim);

C++

// a limited number of configs have ConfigGet* methods;
// for example, you can get the supply current limits
SupplyCurrentLimitConfiguration supplyCurLim{};
m_motor.ConfigGetSupplyCurrentLimit(supplyCurLim);

Pro
Java

var fx_cfg = new TalonFXConfiguration();
// fetch *all* configs currently applied to the device
m_motor.getConfigurator().refresh(fx_cfg);

C++

configs::TalonFXConfiguration fx_cfg{};
// fetch *all* configs currently applied to the device
m_motor.GetConfigurator().Refresh(fx_cfg);

9.9.2 Status Signals

Phoenix Pro expands the functionality of status signals with the introduction of the Sta-
tusSignalValue (Java, C++).

84 Chapter 9. API Usage

https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/StatusSignalValue.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1_status_signal_value.html

Phoenix Pro

9.9. Migration Guide 85

Phoenix Pro

Using Status Signals

v5
Java

// get latest TalonFX selected sensor position
// units are encoder ticks
int sensorPos = m_talonFX.getSelectedSensorPosition();

// latency is unknown
// cannot synchronously wait for new data

C++

// get latest TalonFX selected sensor position
// units are encoder ticks
int sensorPos = m_talonFX.GetSelectedSensorPosition();

// latency is unknown
// cannot synchronously wait for new data

Pro
Java

// acquire a refreshed TalonFX rotor position signal
var rotorPosSignal = m_talonFX.getRotorPosition();

// because we are calling getRotorPosition() every loop,
// we do not need to call refresh()
//rotorPosSignal.refresh();

// retrieve position value that we just refreshed
// units are rotations
var rotorPos = rotorPosSignal.getValue();

// get latency of the signal
var rotorPosLatency = rotorPosSignal.getTimestamp().getLatency();

// synchronously wait 20 ms for new data
rotorPosSignal.waitForUpdate(0.020);

C++

// acquire a refreshed TalonFX rotor position signal
auto& rotorPosSignal = m_talonFX.GetRotorPosition();

// because we are calling GetRotorPosition() every loop,
// we do not need to call Refresh()
//rotorPosSignal.Refresh();

// retrieve position value that we just refreshed
// units are rotations, uses the units library
auto rotorPos = rotorPosSignal.GetValue();

// get latency of the signal
auto rotorPosLatency = rotorPosSignal.GetTimestamp().GetLatency();

// synchronously wait 20 ms for new data
rotorPosSignal.WaitForUpdate(20_ms);

86 Chapter 9. API Usage

Phoenix Pro

Changing Update Frequency (Status Frame Period)

v5
Java

// slow down the Status 2 frame (selected sensor data) to 5 Hz (200ms)
m_talonFX.setStatusFramePeriod(StatusFrameEnhanced.Status_2_Feedback0, 200);

C++

// slow down the Status 2 frame (selected sensor data) to 5 Hz (200ms)
m_talonFX.SetStatusFramePeriod(StatusFrameEnhanced::Status_2_Feedback0, 200);

Pro
Java

// slow down the position signal to 5 Hz
m_talonFX.getPosition().setUpdateFrequency(5);

C++

// slow down the position signal to 5 Hz
m_talonFX.GetPosition().SetUpdateFrequency(5_Hz);

Important: Currently in Phoenix Pro, when different status signal frequencies are specified
for signals that share a status frame, the last specified frequency is applied to the status
frame. As a result, users should apply the slowest status frame frequencies first and the
fastest frequencies last.

Common Signals

Several status signals have changed name or form in Phoenix Pro.

General Signals

Phoenix 5 Phoenix Pro
BusVoltage SupplyVoltage
Faults / StickyFaults (fills an object) Fault_* / StickyFault_* (individual faults)
FirmwareVersion Version

9.9. Migration Guide 87

Phoenix Pro

Talon FX Signals

Phoenix 5 Phoenix Pro
MotorOutputPercent DutyCycle
StatorCurrent

StatorCurrent (motoring +, braking -),
TorqueCurrent (forward +, reverse -)

Inverted (true/false; matches set-
Inverted)

AppliedRotorPolarity (CCW+/CW+; typi-
cally matches Inverted config, affected by
follower features)

SelectedSensorPosition / SelectedSen-
sorVelocity

Position / Velocity

IntegratedSensor* (in SensorCollection) Rotor*
ActiveTrajectory* (only Motion Magic®
and the Motion Profile Executor)

ClosedLoopReference* (all closed-loop con-
trol requests)

IsFwdLimitSwitchClosed / IsRevLim-
itSwitchClosed (true/false)

GetForwardLimit / GetReverseLimit
(Open/Closed)

CANcoder Signals

Phoenix 5 Phoenix Pro
MagnetFieldStrength MagnetHealth

Pigeon 2 Signals

Note: Many Pigeon 2 signal getters in Phoenix 5 fill an array, such as YawPitchRoll. In
Phoenix Pro, these signals have been broken up into their individual components, such as
Yaw, Pitch, and Roll.

Phoenix 5 Phoenix Pro
RawGyro AngularVelocity*
6dQuaternion Quat*
BiasedAccelerometer Acceleration*
BiasedMagnetometer MagneticField*
RawMagnetometer RawMagneticField*

88 Chapter 9. API Usage

Phoenix Pro

9.9.3 Control Requests

Phoenix Pro provides an extensive list of flexible control modes through the use of strongly-
typed control requests.

Using Control Requests

v5
Java

// robot init, set voltage compensation to 12 V
m_motor.configVoltageComSaturation(12);
m_motor.enableVoltageCompensation(true);

// main robot code, command 12 V output
m_motor.set(ControlMode.PercentOutput, 1.0);

C++

// robot init, set voltage compensation to 12 V
m_motor.ConfigVoltageComSaturation(12);
m_motor.EnableVoltageCompensation(true);

// main robot code, command 12 V output
m_motor.Set(ControlMode::PercentOutput, 1.0);

Pro
Java

// class member variable
VoltageOut m_request = new VoltageOut(0);

// main robot code, command 12 V output
m_motor.setControl(m_request.withOutput(12.0));

C++

// class member variable
controls::VoltageOut m_request{0_V};

// main robot code, command 12 V output
m_motor.SetControl(m_request.WithOutput(12_V));

9.9. Migration Guide 89

Phoenix Pro

90 Chapter 9. API Usage

Phoenix Pro

Follower Motors

v5
Java

// robot init, set m_follower to follow m_leader
m_follower.follow(m_leader);
// m_follower should NOT oppose m_leader
m_follower.setInverted(TalonFXInvertType.FollowMaster);
// set m_strictFollower to follow m_leader
m_strictFollower.follow(m_leader);
// set m_strictFollower to ignore m_leader invert and use its own
m_strictFollower.setInverted(TalonFXInvertType.CounterClockwise);

// main robot code, command 100% output for m_leader
m_leader.set(ControlMode.PercentOutput, 1.0);
// - m_follower and m_strictFollower will also run at 100% output
// - m_follower will follow m_leader's invert, while m_strictFollower
// ignores it and uses its own
// NOTE: if set(), neutralOutput(), or disable() is ever called on
// the followers, they will stop following

C++

// robot init, set m_follower to follow m_leader
m_follower.Follow(m_leader);
// m_follower should NOT oppose m_leader
m_follower.SetInverted(TalonFXInvertType::FollowMaster);
// set m_strictFollower to follow m_leader
m_strictFollower.Follow(m_leader);
// set m_strictFollower to ignore m_leader invert and use its own
m_strictFollower.SetInverted(TalonFXInvertType::CounterClockwise);

// main robot code, command 100% output for m_leader
m_leader.Set(ControlMode::PercentOutput, 1.0);
// - m_follower and m_strictFollower will also run at 100% output
// - m_follower will follow m_leader's invert, while m_strictFollower
// ignores it and uses its own
// NOTE: if Set(), NeutralOutput(), or Disable() is ever called on
// the followers, they will stop following

Pro
Java

// class member variables
DutyCycle m_request = new DutyCycle(0);

// robot init, set m_follower to follow m_leader
// m_follower should NOT oppose leader
m_follower.setControl(new Follower(m_leader.getDeviceID(), false));
// set m_strictFollower to strict-follow m_leader
// strict followers ignore the leader's invert and use their own
m_strictFollower.setControl(new StrictFollower(m_leader.getDeviceID()));

// main robot code, command 100% output for m_leader
m_motor.setControl(m_request.withOutput(1.0));
// - m_follower and m_strictFollower will also run at 100% output
// - m_follower will follow m_leader's invert, while m_strictFollower
// ignores it and uses its own

C++

// class member variables
controls::DutyCycle m_request{0};

// robot init, set m_follower to follow m_leader
// m_follower should NOT oppose leader
m_follower.SetControl(controls::Follower{m_leader.GetDeviceID(), false});
// set m_strictFollower to strict-follow m_leader
// strict followers ignore the leader's invert and use their own
m_strictFollower.SetControl(controls::StrictFollower{m_leader.GetDeviceID()});

// main robot code, command 100% output for m_leader
m_motor.SetControl(m_request.WithOutput(1.0));
// - m_follower and m_strictFollower will also run at 100% output
// - m_follower will follow m_leader's invert, while m_strictFollower
// ignores it and uses its own

9.9. Migration Guide 91

Phoenix Pro

Control Types

In Phoenix Pro, voltage compensation has been replaced with the ability to directly specify
the control output type.
All control output types are supported in open-loop and closed-loop control requests.

Table 1: Open-loop Control Requests
Phoenix 5 Phoenix Pro
PercentOutput DutyCycleOut
PercentOutput + Voltage Compensation VoltageOut
Phoenix 5 does not support torque control TorqueCurrentFOC
Current closed-loop This has been deprecated in Phoenix Pro.

• Users looking to control torque should
use TorqueCurrentFOC

• Users looking to limit current should
use supply and stator current limits

Table 2: Closed-loop Control Requests
Phoenix 5 Phoenix Pro
Position PositionDutyCycle
Velocity VelocityDutyCycle
MotionMagic MotionMagicDutyCycle
Closed-loop + Voltage Compensation {ClosedLoop}Voltage
Closed-loop + Torque Control (not supported in Phoenix
5)

{Closed-
Loop}TorqueCurrentFOC

9.9.4 Closed-Loop Control

Phoenix Pro enhances the experience of using onboard closed-loop control through the use
of standardized units and a variety of control output types.

Closed Loop Gains

These tables are for translating Phoenix 5 gains to Phoenix Pro DutyCycle gains.

Note: There are other control output types in Phoenix Pro that will change the magnitude
of the gains.

92 Chapter 9. API Usage

Phoenix Pro

Position (DutyCycle)

Velocity (DutyCycle)

9.9. Migration Guide 93

Phoenix Pro

94 Chapter 9. API Usage

Phoenix Pro

Using Closed-Loop Control

v5
Java

// robot init, set slot 0 gains
m_motor.config_kF(0, 0.05, 50);
m_motor.config_kP(0, 0.046, 50);
m_motor.config_kI(0, 0.0002, 50);
m_motor.config_kD(0, 4.2, 50);

// enable voltage compensation
m_motor.configVoltageComSaturation(12);
m_motor.enableVoltageCompensation(true);

// periodic, run velocity control with slot 0 configs,
// target velocity of 50 rps (10240 ticks/100ms)
m_motor.selectProfileSlot(0, 0);
m_motor.set(ControlMode.Velocity, 10240);

C++

// robot init, set slot 0 gains
m_motor.Config_kF(0, 0.05, 50);
m_motor.Config_kP(0, 0.046, 50);
m_motor.Config_kI(0, 0.0002, 50);
m_motor.Config_kD(0, 4.2, 50);

// enable voltage compensation
m_motor.ConfigVoltageComSaturation(12);
m_motor.EnableVoltageCompensation(true);

// periodic, run velocity control with slot 0 configs,
// target velocity of 50 rps (10240 ticks/100ms)
m_motor.SelectProfileSlot(0, 0);
m_motor.Set(ControlMode::Velocity, 10240);

Pro
Java

// class member variable
VelocityVoltage m_velocity = new VelocityVoltage(0);

// robot init, set slot 0 gains
var slot0Configs = new Slot0Configs();
slot0Configs.kV = 0.12;
slot0Configs.kP = 0.11;
slot0Configs.kI = 0.5;
slot0Configs.kD = 0.01;
m_talonFX.getConfigurator().apply(slot0Configs, 0.050);

// periodic, run velocity control with slot 0 configs,
// target velocity of 50 rps
m_velocity.Slot = 0;
m_motor.setControl(m_velocity.withVelocity(50));

C++

// class member variable
controls::VelocityVoltage m_velocity{0_tps};

// robot init, set slot 0 gains
configs::Slot0Configs slot0Configs{};
slot0Configs.kV = 0.12;
slot0Configs.kP = 0.11;
slot0Configs.kI = 0.5;
slot0Configs.kD = 0.01;
m_talonFX.GetConfigurator().Apply(slot0Configs, 50_ms);

// periodic, run velocity control with slot 0 configs,
// target velocity of 50 rps
m_velocity.Slot = 0;
m_motor.SetControl(m_velocity.WithVelocity(50_tps));

9.9. Migration Guide 95

Phoenix Pro

96 Chapter 9. API Usage

Phoenix Pro

Motion Magic®

v5
Java

// robot init, set slot 0 gains
m_motor.config_kF(0, 0.05, 50);
// PID runs on position
m_motor.config_kP(0, 0.2, 50);
m_motor.config_kI(0, 0, 50);
m_motor.config_kD(0, 4.2, 50);

// set Motion Magic settings
m_motor.configMotionCruiseVelocity(16384); // 80 rps = 16384 ticks/100ms cruise␣
↪→velocity
m_motor.configMotionAcceleration(32768); // 160 rps/s = 32768 ticks/100ms/s␣
↪→acceleration
m_motor.configMotionSCurveStrength(3); // s-curve smoothing strength of 3

// enable voltage compensation
m_motor.configVoltageComSaturation(12);
m_motor.enableVoltageCompensation(true);

// periodic, run Motion Magic with slot 0 configs
m_motor.selectProfileSlot(0, 0);
// target position of 200 rotations (409600 ticks)
// add 0.02 (2%) arbitrary feedforward to overcome friction
m_motor.set(ControlMode.MotionMagic, 409600, DemandType.ArbitraryFeedforward, 0.
↪→02);

C++

// robot init, set slot 0 gains
m_motor.Config_kF(0, 0.05, 50);
// PID runs on position
m_motor.Config_kP(0, 0.2, 50);
m_motor.Config_kI(0, 0, 50);
m_motor.Config_kD(0, 4.2, 50);

// set Motion Magic settings
m_motor.ConfigMotionCruiseVelocity(16384); // 80 rps = 16384 ticks/100ms cruise␣
↪→velocity
m_motor.ConfigMotionAcceleration(32768); // 160 rps/s = 32768 ticks/100ms/s␣
↪→acceleration
m_motor.ConfigMotionSCurveStrength(3); // s-curve smoothing strength of 3

// enable voltage compensation
m_motor.ConfigVoltageComSaturation(12);
m_motor.EnableVoltageCompensation(true);

// periodic, run Motion Magic with slot 0 configs
m_motor.SelectProfileSlot(0, 0);
// target position of 200 rotations (409600 ticks)
// add 0.02 (2%) arbitrary feedforward to overcome friction
m_motor.Set(ControlMode::MotionMagic, 409600, DemandType::ArbitraryFeedforward, 0.
↪→02);

ProNote: The Motion Magic® S-Curve Strength has been replaced with jerk control in
Phoenix Pro.

Java

// class member variable
MotionMagicVoltage m_motmag = new MotionMagicVoltage(0);

// robot init
var talonFXConfigs = new TalonFXConfiguration();

// set slot 0 gains
var slot0Configs = talonFXConfigs.Slot0Configs;
slot0Configs.kS = 0.24; // add 0.24 V to overcome friction
slot0Configs.kV = 0.12; // apply 12 V for a target velocity of 100 rps
// PID runs on position
slot0Configs.kP = 4.8;
slot0Configs.kI = 0;
slot0Configs.kD = 0.1;

// set Motion Magic settings
var motionMagicConfigs = talonFXConfigs.MotionMagicConfigs;
motionMagicConfigs.MotionMagicCruiseVelocity = 80; // 80 rps cruise velocity
motionMagicConfigs.MotionMagicAcceleration = 160; // 160 rps/s acceleration (0.5␣
↪→seconds)
motionMagicConfigs.MotionMagicJerk = 1600; // 1600 rps/s^2 jerk (0.1 seconds)

m_talonFX.getConfigurator().apply(talonFXConfigs, 0.050);

// periodic, run Motion Magic with slot 0 configs,
// target position of 200 rotations
m_motmag.Slot = 0;
m_motor.setControl(m_motmag.withPosition(200));

C++

// class member variable
controls::MotionMagicVoltage m_motmag{0_tr};

// robot init
configs::TalonFXConfiguration talonFXConfigs{};

// set slot 0 gains
auto& slot0Configs = talonFXConfigs.Slot0Configs;
slot0Configs.kS = 0.24; // add 0.24 V to overcome friction
slot0Configs.kV = 0.12; // apply 12 V for a target velocity of 100 rps
// PID runs on position
slot0Configs.kP = 4.8;
slot0Configs.kI = 0;
slot0Configs.kD = 0.1;

// set Motion Magic settings
auto& motionMagicConfigs = talonFXConfigs.MotionMagicConfigs;
motionMagicConfigs.MotionMagicCruiseVelocity = 80; // 80 rps cruise velocity
motionMagicConfigs.MotionMagicAcceleration = 160; // 160 rps/s acceleration (0.5␣
↪→seconds)
motionMagicConfigs.MotionMagicJerk = 1600; // 1600 rps/s^2 jerk (0.1 seconds)

m_talonFX.GetConfigurator().Apply(talonFXConfigs, 50_ms);

// periodic, run Motion Magic with slot 0 configs,
// target position of 200 rotations
m_motmag.Slot = 0;
m_motor.SetControl(m_motmag.WithPosition(200_tr));

9.9. Migration Guide 97

Phoenix Pro

Motion Profiling

The Motion Profile Executor is not supported in the current release of Phoenix Pro. Users
can use Motion Magic® or run a motion profile on the robot controller.

9.9.5 Feature Replacements

In addition to the changes shown in the other sections, several other Phoenix 5 features have
been replaced or improved upon in Phoenix Pro.

Motor Invert

In Phoenix Pro, motor invert is now a persistent config (Java, C++) instead of a control signal.

Neutral Mode

In Phoenix Pro, Neutral mode is now available in API as a config (Java, C++). Many control
requests also have the ability to override the neutral mode to either force braking (Java, C++)
or force coasting (Java, C++).

Nominal Output

The Talon FX forward and reverse Nominal Output configs have been removed in Phoenix
Pro.
The typical use case of the nominal output configs is to overcome friction in closed-loop control
modes, which can now be achieved using the kS feedforward parameter (Java, C++).

Sensor Phase

The Talon FX setSensorPhase() method has been removed in Phoenix Pro.
• The Talon FX integrated sensor is always in phase, so themethod does nothing in Phoenix
5.

• When using a remote sensor, you can invert the remote sensor to bring it in phase with
the Talon FX.

Sensor Initialization Strategy

The Talon FX and CANcoder sensors are always initialized to their absolute position in Phoenix
Pro.

98 Chapter 9. API Usage

https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/configs/MotorOutputConfigs.html#Inverted
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1configs_1_1_motor_output_configs.html#a2816a895ab62ec5c4411dc2a1606e3de
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/configs/MotorOutputConfigs.html#NeutralMode
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1configs_1_1_motor_output_configs.html#af908bb8c312a55149f054ec95405c3e0
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/controls/DutyCycleOut.html#OverrideBrakeDurNeutral
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1controls_1_1_duty_cycle_out.html#a7aee78ef5456c909c6ada62f7378c90b
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/controls/TorqueCurrentFOC.html#OverrideCoastDurNeutral
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1controls_1_1_torque_current_f_o_c.html
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/configs/Slot0Configs.html#kS
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1configs_1_1_slot0_configs.html#adfb56621e174939d621c93de80d433b7

Phoenix Pro

Velocity Measurement Period/Window

In Phoenix Pro, the velocity rolling average window in Talon FX and CANcoder has been
replaced with a Kalman filter, resulting in a less noisy velocity signal with a minimal impact on
latency. As a result, the velocity measurement period/window configs are no longer necessary
in Phoenix Pro and have been removed.

Integral Zone

Phoenix Pro automatically prevents integral windup in closed-loop controls. As a result, the
Integral Zone config is no longer necessary and has been removed.

9.9. Migration Guide 99

Phoenix Pro

100 Chapter 9. API Usage

10
Simulation

Phoenix Pro supports comprehensive simulation support. All hardware features are available
in simulation, including configs, control requests, simulated CAN bus timing, and Phoenix
Tuner X support.

10.1 Introduction to Simulation

10.1.1 Supported Devices

Currently, all Phoenix Pro devices are supported in simulation.

Warning: Multiple CAN buses using the CANivore API is not supported at this time. All
CAN devices will appear on the same CAN bus. If you wish to run your robot code in
simulation, ensure devices have unique IDs across CAN buses.

10.1.2 Simulation API

Each supported device has a device-specific SimState object that can be used to manage
I/O with the simulated device. The object can be retrieved by calling getSimState() on an
instance of a device.

Java

var talonFXSim = m_talonFX.getSimState();

101

Phoenix Pro

C++

auto& talonFXSim = m_talonFX.GetSimState();

Note: Phoenix Pro utilizes the C++ units library when applicable.

Orientation

The SimState API ignores typical device invert settings, as the user may change invert for
any reason (such as flipping which direction is forward for a drivebase). As a result, for some
devices, the SimState object supports specifying the orientation of the device relative to the
robot chassis (Java, C++).
This orientation represents the mechanical linkage between the device and the robot chas-
sis. It should not be changed with runtime invert, as runtime invert specifies the logical
orientation of the device. Rather, the orientation should only be modified when the me-
chanical linkage itself changes, such as when switching between two gearboxes inverted
from each other.

Java

var leftTalonFXSim = m_leftTalonFX.getSimState();
var rightTalonFXSim = m_rightTalonFX.getSimState();

// left drivetrain motors are typically CCW+
leftTalonFXSim.Orientation = ChassisReference.CounterClockwise_Positive;

// right drivetrain motors are typically CW+
rightTalonFXSim.Orientation = ChassisReference.Clockwise_Positive;

C++

auto& leftTalonFXSim = m_leftTalonFX.GetSimState();
auto& rightTalonFXSim = m_rightTalonFX.GetSimState();

// left drivetrain motors are typically CCW+
leftTalonFXSim.Orientation = sim::ChassisReference::CounterClockwise_Positive;

// right drivetrain motors are typically CW+
rightTalonFXSim.Orientation = sim::ChassisReference::Clockwise_Positive;

102 Chapter 10. Simulation

https://docs.wpilib.org/en/stable/docs/software/basic-programming/cpp-units.html
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/sim/TalonFXSimState.html#Orientation
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1sim_1_1_talon_f_x_sim_state.html#accd9e74b59931e43563f26ce44c68890

Phoenix Pro

Inputs and Outputs

All SimState objects contain multiple inputs to manipulate the state of the device based on
simulation physics calculations. For example, all device SimState objects have a supply volt-
age input:

Important: Non-FRC platforms are required to set supply voltage, as it affects simulation
calculations. It’s recommended that FRC users set supply voltage to getBatteryVoltage()
(Java, C++) to take advantage of WPILib’s BatterySim (Java, C++) API.

Java

// set the supply voltage of the TalonFX to 12 V
m_talonFXSim.setSupplyVoltage(12);

C++

// set the supply voltage of the TalonFX to 12 V
m_talonFXSim.SetSupplyVoltage(12_V);

Some device SimState objects also contain outputs that can be used in simulation physics
calculations. For example, the TalonFXSimState (Java, C++) object has a motor voltage
output that can be used to calculate position and velocity:

Java

// get the motor voltage of the TalonFX
var motorVoltage = m_talonFXSim.getMotorVoltage();

// use the motor voltage to calculate new position and velocity using an external␣
↪→MotorSimModel class
m_motorSimModel.setMotorVoltage(motorVoltage);
m_motorSimModel.update(0.020); // assume 20 ms loop time

// apply the new rotor position and velocity to the TalonFX
m_talonFXSim.setRawRotorPosition(m_motorSimModel.getPosition());
m_talonFXSim.setRotorVelocity(m_motorSimModel.getVelocity());

C++

// get the motor voltage of the TalonFX
auto motorVoltage = m_talonFXSim.GetMotorVoltage();

// use the motor voltage to calculate new position and velocity using an external␣
↪→MotorSimModel class
m_motorSimModel.SetMotorVoltage(motorVoltage);
m_motorSimModel.Update(20_ms); // assume 20 ms loop time

(continues on next page)

10.1. Introduction to Simulation 103

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/RobotController.html#getBatteryVoltage()
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_robot_controller.html#a4b1e42e825583c82664a4ecc5d81b83f
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/simulation/BatterySim.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1sim_1_1_battery_sim.html
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/sim/TalonFXSimState.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1sim_1_1_talon_f_x_sim_state.html

Phoenix Pro

(continued from previous page)

// apply the new rotor position and velocity to the TalonFX
m_talonFXSim.SetRawRotorPosition(m_motorSimModel.GetPosition());
m_talonFXSim.SetRotorVelocity(m_motorSimModel.GetVelocity());

10.1.3 High Fidelity CAN Bus Simulation

Many popular CTR Electronics CAN devices support high-fidelity simulation, where the in-
fluence of the CAN bus is simulated at a level similar to what happens on a real robot. This
means that the timing behavior of control and status signals in simulation will align to the
same framing intervals seen on a real CAN bus. In simulation, this may appear as a delay be-
tween setting a signal and getting its real value, or between setting its real value and getting
it in API.
The update rate can be modified for simulation by wrapping the signal’s frequency in a
RobotBase.isSimulation() (Java, C++) condition.

Java

if (RobotBase.isSimulation()) {
m_velocitySignal.setUpdateFrequency(1000); // set update rate to 1ms

}

C++

if (RobotBase::IsSimulation()) {
m_velocitySignal.SetUpdateFrequency(1000_Hz); // set update rate to 1ms

}

104 Chapter 10. Simulation

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/RobotBase.html#isSimulation()
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_robot_base.html#a307a770aa58d89e1f1cc8e7970cceb84

11
WPILib Integration

Phoenix Pro API used as part of WPILib robot projects provides implementations of common
WPILib interfaces that FRC teams use.

11.1 MotorController Integration

Phoenix Pro motor controller classes such as TalonFX (Java, C++) implement the Motor-
Controller (Java, C++) interface. This allows Phoenix Pro motor controllers to be used in
WPILib drivetrain classes such as DifferentialDrive.

Java

// instantiate motor controllers
TalonFX m_motorLeft = new TalonFX(0);
TalonFX m_motorRight = new TalonFX(1);

// create differentialdrive object for robot control
DifferentialDrive m_diffDrive = new DifferentialDrive(m_motorLeft, m_motorRight);

// instantiate joystick
XboxController m_driverJoy = new XboxController(0);

public void teleopPeriodic() {
var forward = -m_driverJoy.getLeftY();
var rot = -m_driverJoy.getRightX();

m_diffDrive.arcadeDrive(forward, rot);
}

105

https://docs.wpilib.org
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/hardware/TalonFX.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1hardware_1_1_talon_f_x.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/motorcontrol/MotorController.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_motor_controller.html

Phoenix Pro

C++ (Source)

void Robot::TeleopPeriodic() {
auto forward = -m_driverJoy.GetLeftY();
auto rot = -m_driverJoy.GetRightX();

m_diffDrive.ArcadeDrive(forward, rot);
}

C++ (Header)

// instantiate motor controllers
hardware::TalonFX m_motorLeft{0};
hardware::TalonFX m_motorRight{1};

// create differentialdrive object for robot control
frc::DifferentialDrive m_diffDrive{m_motorLeft, m_motorRight};

// instantiate joystick
frc::XboxController m_driverJoy{0};

11.1.1 Motor Safety

CTR Electronics supported actuators implement WPILib Motor Safety. In additional to the
normal enable signal of CTR Electronics actuators, Motor Safety will automatically disable
the device according to the WPILib Motor Safety implementation.

11.1.2 Simulation

It’s recommended that users set supply voltage to getBatteryVoltage() (Java, C++) to take
advantage of WPILib’s BatterySim (Java, C++) API. Additionally, the simulated device state
is shown in the simulation Other Devices menu.

106 Chapter 11. WPILib Integration

https://docs.wpilib.org/en/stable/docs/software/hardware-apis/motors/wpi-drive-classes.html#motor-safety
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/RobotController.html#getBatteryVoltage()
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_robot_controller.html#a4b1e42e825583c82664a4ecc5d81b83f
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/simulation/BatterySim.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1sim_1_1_battery_sim.html

Phoenix Pro

11.2 Gyro Integration

CTR Electronics IMUs, such as the Pigeon 2.0, implement the WPILib Gyro (Java, C++) in-
terface.

Note: calibrate() does nothing on the Pigeon 2.0, as it does not require manual calibration.

11.2. Gyro Integration 107

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/interfaces/Gyro.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_gyro.html

Phoenix Pro

11.2.1 Simulation

The simulated device state is shown in the simulation Other Devices menu.

108 Chapter 11. WPILib Integration

12
Examples

Comprehensive API usage examples and tutorials.

12.1 Open-Loop Quickstart

The below example showcases controlling a four-motor drivetrain.

12.1.1 Declaring Motor Controllers

The TalonFX motor controller constructor (Java, C++) requires a device ID (int) and an
optional CAN bus (string).

Note: The name of the native roboRIO CAN bus is rio. This is also the default CAN bus on
the roboRIO when none is specified.

Java

public class Robot extends TimedRobot {
private static final String kCANBus = "canivore";

private final TalonFX m_leftLeader = new TalonFX(0, kCANBus);
private final TalonFX m_rightLeader = new TalonFX(1, kCANBus);
private final TalonFX m_leftFollower = new TalonFX(2, kCANBus);
private final TalonFX m_rightFollower = new TalonFX(3, kCANBus);

}

109

https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/hardware/TalonFX.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1hardware_1_1_talon_f_x.html

Phoenix Pro

C++ (Header)

class Robot : public frc::TimedRobot {
private:

static constexpr char const *kCANBus{"canivore"};

ctre::phoenixpro::hardware::TalonFX m_leftLeader{0, kCANBus};
ctre::phoenixpro::hardware::TalonFX m_rightLeader{1, kCANBus};
ctre::phoenixpro::hardware::TalonFX m_leftFollower{2, kCANBus};
ctre::phoenixpro::hardware::TalonFX m_rightFollower{3, kCANBus};

}

12.1.2 Configure Followers & Inverts

In a traditional robot drivetrain, there are two motors attached to each horizontal side of the
drivetrain. This setup typically (unless mechanically inverted) causes the right side to rotate
in an opposite direction when given the same voltage.

110 Chapter 12. Examples

Phoenix Pro

Java

@Override
public void robotInit() {

// start with factory-default configs
var currentConfigs = new MotorOutputConfigs();

// The left motor is CCW+
currentConfigs.Inverted = InvertedValue.CounterClockwise_Positive;
m_leftLeader.getConfigurator().apply(currentConfigs);

// The right motor is CW+
currentConfigs.Inverted = InvertedValue.Clockwise_Positive;
m_rightLeader.getConfigurator().apply(currentConfigs);

// Ensure our followers are following their respective leader
m_leftFollower.setControl(new Follower(m_leftLeader.getDeviceID(), false));
m_rightFollower.setControl(new Follower(m_rightLeader.getDeviceID(), false));

}

C++ (Source)

#include "Robot.h"

using namespace ctre::phoenixpro;

void Robot::RobotInit() {
// start with factory-default configs
configs::MotorOutputConfigs currentConfigs{};

// The left motor is CCW+
currentConfigs.Inverted = signals::InvertedValue::CounterClockwise_Positive;
m_leftLeader.GetConfigurator().Apply(currentConfigs);

// The right motor is CW+
currentConfigs.Inverted = signals::InvertedValue::Clockwise_Positive;
m_rightLeader.GetConfigurator().Apply(currentConfigs);

// Ensure the followers are following their respective leader
m_leftFollower.SetControl(controls::Follower{m_leftLeader.GetDeviceID(), false});
m_rightFollower.SetControl(controls::Follower{m_rightLeader.GetDeviceID(), false});

}

12.1.3 Full Example

Java

public class Robot extends TimedRobot {
private static final String kCANBus = "canivore";

private final TalonFX m_leftLeader = new TalonFX(0, kCANBus);
private final TalonFX m_rightLeader = new TalonFX(1, kCANBus);

(continues on next page)

12.1. Open-Loop Quickstart 111

Phoenix Pro

(continued from previous page)
private final TalonFX m_leftFollower = new TalonFX(2, kCANBus);
private final TalonFX m_rightFollower = new TalonFX(3, kCANBus);

private final DutyCycleOut m_leftOut = new DutyCycleOut(0);
private final DutyCycleOut m_rightOut = new DutyCycleOut(0);

private final XboxController m_driverJoy = new XboxController(0);

@Override
public void robotInit() {

// start with factory-default configs
var currentConfigs = new MotorOutputConfigs();

// The left motor is CCW+
currentConfigs.Inverted = InvertedValue.CounterClockwise_Positive;
m_leftLeader.getConfigurator().apply(currentConfigs);

// The right motor is CW+
currentConfigs.Inverted = InvertedValue.Clockwise_Positive;
m_rightLeader.getConfigurator().apply(currentConfigs);

// Ensure our followers are following their respective leader
m_leftFollower.setControl(new Follower(m_leftLeader.getDeviceID(), false));
m_rightFollower.setControl(new Follower(m_rightLeader.getDeviceID(), false));

}

@Override
public void teleopPeriodic() {

// retrieve joystick inputs
var fwd = -m_driverJoy.getLeftY();
var rot = m_driverJoy.getRightX();

// modify control requests
m_leftOut.Output = fwd + rot;
m_rightOut.Output = fwd - rot;

// send control requests
m_leftLeader.setControl(m_leftOut);
m_rightLeader.setControl(m_rightOut);

}
}

C++ (Source)

#include "Robot.h"

using namespace ctre::phoenixpro;

void Robot::RobotInit() {
// start with factory-default configs
configs::MotorOutputConfigs currentConfigs{};

// The left motor is CCW+
currentConfigs.Inverted = signals::InvertedValue::CounterClockwise_Positive;

(continues on next page)

112 Chapter 12. Examples

Phoenix Pro

(continued from previous page)
m_leftLeader.GetConfigurator().Apply(currentConfigs);

// The right motor is CW+
currentConfigs.Inverted = signals::InvertedValue::Clockwise_Positive;
m_rightLeader.GetConfigurator().Apply(currentConfigs);

// Ensure the followers are following their respective leader
m_leftFollower.SetControl(controls::Follower{m_leftLeader.GetDeviceID(), false});
m_rightFollower.SetControl(controls::Follower{m_rightLeader.GetDeviceID(), false});

}

void Robot::TeleopPeriodic() {
// retrieve joystick inputs
auto fwd = -m_driverJoy.GetLeftY();
auto rot = m_driverJoy.GetRightX();

// modify control requests
m_leftOut.Output = fwd + rot;
m_rightOut.Output = fwd - rot;

// send control requests
m_leftLeader.SetControl(m_leftOut);
m_rightLeader.SetControl(m_rightOut);

}

C++ (Header)

private:
static constexpr char const *kCANBus{"canivore"};

ctre::phoenixpro::hardware::TalonFX m_leftLeader{0, kCANBus};
ctre::phoenixpro::hardware::TalonFX m_rightLeader{1, kCANBus};
ctre::phoenixpro::hardware::TalonFX m_leftFollower{2, kCANBus};
ctre::phoenixpro::hardware::TalonFX m_rightFollower{3, kCANBus};

ctre::phoenixpro::controls::DutyCycleOut m_leftOut{0};
ctre::phoenixpro::controls::DutyCycleOut m_rightOut{0};

frc::XboxController m_driverJoy{0};

12.1. Open-Loop Quickstart 113

Phoenix Pro

114 Chapter 12. Examples

13
CANivore Intro

The CANivore is a multipurpose USB-to-CAN FD device. The CANivore:
• Adds a secondary CAN FD bus to the roboRIO

– CAN FD improves upon CAN with increased device bandwidth and transfer speed.
• Allows the control of CTR Electronics devices on non-roboRIO platforms.

Important: Details on licensing your CANivore is available on the licensing page.

Initial Setup Setting up a CANivore for robot projects and desktop development.
API Usage Using the CANivore with devices in API.
Hardware-Attached Simulation Using a CANivore with hardware devices in a

desktop environment.
Advanced Configuration Advanced configuration options for the CANivore.

115

https://store.ctr-electronics.com/canivore/
https://store.ctr-electronics.com/can-fd/

Phoenix Pro

116 Chapter 13. CANivore Intro

14
CANivore Setup

14.1 Supported Systems

Currently, the following systems are supported for CANivore development:
• NI roboRIO
• Windows 10/11 x86-64
• Linux x86-64 (desktop)

– Ubuntu 22.04 or newer
– Debian Bullseye or newer

• Linux ARM32 and ARM64 (Raspberry Pi, NVIDIA Jetson)
– Ubuntu 20.04 or newer
– Debian Bullseye or newer

Note: Custom bit rates and CAN 2.0 are not supported at this time. The parameters
passed into SocketCAN are not applied by the firmware.

14.1.1 roboRIO

Note: Phoenix Tuner X requires a 2023 roboRIO image or newer to configure the CANivore.

No additional steps are required. The roboRIO comes with the canivore-usb kernel module
pre-installed.

117

Phoenix Pro

14.1.2 Linux (non-FRC)

On non-FRC Linux systems, the canivore-usb kernel module must be installed to add Socket-
CAN support for the CANivore. The kernel module is distributed through our APT repository.
Begin with adding the repository to your APT sources.

sudo curl -s --compressed -o /usr/share/keyrings/ctr-pubkey.gpg "https://deb.ctr-
↪→electronics.com/ctr-pubkey.gpg"
sudo curl -s --compressed -o /etc/apt/sources.list.d/ctr<year>.list "https://deb.ctr-
↪→electronics.com/ctr<year>.list"

Note: <year> should be replaced with the year of Phoenix Pro software for which you have
purchased licenses.

After adding the sources, the kernel module can be installed and updated using the following:

sudo apt update
sudo apt install canivore-usb

Tip: To get a robot application up and running quickly, check out our non-FRC Linux example.

14.2 Viewing Attached CANivores

Attached CANivores can be viewed in Phoenix Tuner X by selecting the CANivores page from
the left-hand sidebar. You can specify the target system in the Target IP or Team # text box.

118 Chapter 14. CANivore Setup

https://github.com/CrossTheRoadElec/PhoenixPro-Linux-Example

Phoenix Pro

Note: The Phoenix Diagnostic Server must be running on the target system to use the
CANivores page.

Tip: If you are connecting to CANivores on your local Windows machine, you can enable
the CANivore USB toggle and set the target IP to localhost. This runs a diagnostic server
within Tuner X so you do not need to run a robot project to communicate with CANivores.

14.2. Viewing Attached CANivores 119

Phoenix Pro

14.3 Field Upgrading CANivores

A CANivore can be field updated using Phoenix Tuner X.
Click or tap on the listed CANivore card:

The CANivore can then be field upgraded via the dropdown or by manually selected a file:

120 Chapter 14. CANivore Setup

Phoenix Pro

Phoenix Tuner X also allows the user to batch field upgrade CANivores from the list of CANi-
vores in the same manner as batch field upgrading devices.

14.4 Renaming CANivores

CANivores can be given custom names for use within a robot program. This can be configured
through Phoenix Tuner X on the specified device card.

14.4. Renaming CANivores 121

Phoenix Pro

122 Chapter 14. CANivore Setup

15
CANivore API

All device constructors have an overload that takes a string CAN bus identifier. This identifier
can be rio for the native roboRIO CAN bus, * to select the first available CANivore, or a
CANivore’s name or serial number. On non-FRC Linux systems, this string can also be a
SocketCAN interface.

Note: If there are multiple CANivores with the same name, the system will use the first
CANivore found.

If no CAN bus string is passed into the constructor, or the CAN bus string is empty, the
behavior is platform-dependent:
• roboRIO: use the roboRIO native CAN bus
• Windows: use the first CANivore found
• non-FRC Linux: use SocketCAN interface can0

Java

TalonFX fx_default = new TalonFX(0); // On roboRIO, this constructs a TalonFX on the␣
↪→RIO native CAN bus
TalonFX fx_rio = new TalonFX(1, "rio"); // This also constructs a TalonFX on the RIO␣
↪→native CAN bus
TalonFX fx_drivebase = new TalonFX(0, "Drivebase"); // This constructs a TalonFX on␣
↪→the CANivore bus named "Drivebase"
CANcoder cc_elevator = new CANcoder(0, "Elevator"); // This constructs a CANcoder on␣
↪→the CANivore bus named "Elevator"

123

Phoenix Pro

C++ (Header)

hardware::TalonFX fx_default{0}; // On roboRIO, this constructs a TalonFX on the RIO␣
↪→native CAN bus
hardware::TalonFX fx_rio{1, "rio"}; // This also constructs a TalonFX on the RIO␣
↪→native CAN bus
hardware::TalonFX fx_drivebase{0, "Drivebase"}; // This constructs a TalonFX on the␣
↪→CANivore bus named "Drivebase"
hardware::CANcoder cc_elevator{0, "Elevator"}; // This constructs a CANcoder on the␣
↪→CANivore bus named "Elevator"

15.1 CANivore Status Prints

When working with CANivore CAN buses in a robot program, Phoenix prints some messages
to report the state of the CANivore connection. These messages can be useful to debug
connection issues (bad USB vs bad CAN) or report bugs to CTR Electronics.

Table 1: Connection Messages
Message Connection Status
CANbus Failed to Connect Could not connect to a CANivore with the given name

or serial number
CANbus Connected Successfully found and connected to the CANivore with

the given name or serial number
CANbus Disconnected Detected that a CANivore USB device has been discon-

nected

Table 2: CANivore Bring-up Messages (Linux only)
Message Bring-up Status
CANbus Failed Bring-up Found and connected to the CANivore, but could not

configure the device or start the network
CANbus Successfully Started Successfully configured the CANivore and started the

network

Table 3: Network State Messages
Message Network State
CANbus Network Down

Linux: The SocketCAN network has been deactivated,
USB-to-CAN activity has stopped
Windows: Could not open the communication
channels for USB-to-CAN traffic

CANbus Network Up

Linux: The SocketCAN network has been activated,
USB-to-CAN activity has resumed
Windows: Successfully opened the communication
channels for USB-to-CAN traffic

124 Chapter 15. CANivore API

16
Hardware-Attached Simulation

CANivore supports hardware-attached simulation when used in an FRC robot program. This
allows a CANivore to be used with real devices on supported host operating systems. The
below video showcases controlling a real Falcon 500 in a robot program using hardware-
attached simulation.

To utilize hardware-attached simulation, ensure the CANivore is connected directly via USB
to the machine running the simulation. All devices on the CANivore CAN Bus should be
independently powered, as the CANivore does not provide power. In the robot program, the
CANivore name or * must be specified in the device constructor.

Important: Any motors/actuators that have been connected to a roboRIO CAN Bus at any
time must be factory defaulted due to them being FRC Locked. Factory defaulting can be
done in Tuner X and should be done when the CANivore is not connected to a roboRIO.

125

https://docs.wpilib.org/en/stable/
https://store.ctr-electronics.com/falcon-500-powered-by-talon-fx/

Phoenix Pro

Java

TalonFX m_motor = new TalonFX(0, "mycanivore");

C++

hardware::TalonFX m_motor{0, "mycanivore"};

In VS Code, select the 3 dots in the top-right, then select Hardware Sim Robot Code

A message in the console should appear that the CAN Bus is connected.

********** Robot program startup complete **********
[phoenix] CANbus Connected: uno (WinUSB, 2B189E633353385320202034383803FF)
[phoenix] CANbus Network Up: uno (WinUSB, 2B189E633353385320202034383803FF)
[phoenix] Library initialization is complete.

126 Chapter 16. Hardware-Attached Simulation

17
Advanced Configuration

The CANivore provides additional configuration options for advanced users.

17.1 CAN Bus Termination

The CANivore has a 120 Ω programmable resister for terminating the CAN bus. The resistor
can be configured using the CAN Bus Termination toggle in the CANivore device card in
Phoenix Tuner X.

Warning: A CAN bus requires two termination resistors, one at each extreme end. If
only one is present, communication over CAN may fail.

127

Phoenix Pro

128 Chapter 17. Advanced Configuration

Phoenix Pro

17.2 caniv - CANivore CLI

caniv is a Command-line Interface (CLI) to interact with CANivores outside of Phoenix Tuner
X.

Note: Unlike the CANivores page in Phoenix Tuner X, caniv does not require a running
Phoenix Diagnostic Server.

On Linux systems (including the roboRIO), caniv can be found at /usr/local/bin. On Win-
dows systems, the program is in the Phoenix Tuner X application cache directory, which can
be opened by opening the Diagnostic Log page and clicking the left folder icon in the top
right:

To view a list of available commands, run caniv either with no parameters or with --help.

17.2. caniv - CANivore CLI 129

Phoenix Pro

130 Chapter 17. Advanced Configuration

18
Troubleshooting

18.1 CAN Bus Troubleshooting

There are typically two failure modes that must be resolved:
• There are same-model devices on the bus with the same device ID (devices have a default
device ID of ‘0’).

• CAN bus is not wired correctly or robustly
During hardware validation, you will likely have to isolate each device to assign a unique
device ID.

Note: CTRE software has the ability to resolve device ID conflicts without device isolation,
and CAN bus is capable of reporting the health of the CAN bus (see Driver Station lightening
tab). However, the problem is when both root-causes are occurring at the same time, this
can confuse students who have no experience with CAN bus systems.

Note: Many teams will pre-assign and update devices (Talon SRXs for example) long before
the robot takes form. This is also a great task for new students who need to start learning
the control system (with the appropriate mentor oversight to ensure hardware does not get
damaged).

18.1.1 Identifying Duplicate IDs

Tip: Label the devices appropriately so there is no guessing which device ID is what. Don’t
have a label maker? Use tape and/or Sharpie (sharpie marks can be removed with alcohol).

Phoenix Tuner X will report when there are multiple devices of the same model with the same
ID. This is shown when the device card is RED and there is a message in the middle of the
device card. Users seeing this should iteratively reassign IDs on the device(s).

131

Phoenix Pro

18.1.2 Check your wiring

Specific wiring instructions can be found in the user manual of each product, but there are
common steps that must be followed for all devices:
• If connectors are used for CAN bus, tug-test each individual crimped wire one at a
time. Bad crimps/connection points are the most common cause of intermittent connec-
tion issues.

• Confirm red and black are not flipped.
• Confirm battery voltage is adequate (through Driver Station or through voltmeter).
• Manually inspect and confirm that green-connects-to-green and yellow-connects-to-
yellow at every connection point. Flipping/mixing green and yellow is a common
failure point during hardware bring up.

• Confirm breakers are installed in the PDP where appropriate.
• Measure resistance between CANH and CANL when system is not powered (should mea-
sure ~60Ω). If the measurement is 120Ω, then confirm both RIO and PDP are in circuit,
and PDP jumper is in the correct location.

18.1.3 LEDs are red - now what?

We need to rule out same-ID versus bad-bus-wiring.
There are two approaches:
• Approach 1 will help troubleshoot bad wiring and common IDs.
• Approach 2 will only be effective in troubleshooting common IDs, but this method is
noteworthy because it is simple/quick (no wiring changes, just pull breakers).

The specific instructions for changing device ID are in the next section. Review this if needed.

Approach 1 (best)

• Physically connect CAN bus from roboRIO to one device only. Circumvent your
wiring if need be.

• Power boot robot/bench setup.
• Open Phoenix Tuner X and wait for connection (roboRIO may take ~30 seconds to boot)
• Open the Devices page
• Confirm that CAN device appears
• Use Tuner X to change the device ID
• Label the new ID on the physical device
• Repeat this procedure for every device, one at a time

If you find a particular device where communication is not possible, scrutinize device’s power
and CAN connection to the system. Make the test setup so simple that the only failure mode
possible is within the device itself.

132 Chapter 18. Troubleshooting

Phoenix Pro

Note: Typically, there must be two 120-Ω termination resistors at each end of the bus. CTR
Electronics integrates termination resistors into the PDP and the CANivore. The roboRIO
also has an integrated termination resistor. During bring-up, if you keep your harness short
(such as the CAN pigtail leads from a single TalonFX) then a single resistor is adequate for
testing purposes.

Approach 2 (easier)

• Leave CAN bus wiring as is
• Pull breakers and PCM fuse from PDP
• Disconnect CAN bus pigtail from PDP
• Pick the first device to power up and restore breaker/fuse/pigtail so that only
this CAN device is powered

• Power boot robot/bench setup
• Open Phoenix Tuner X and wait for connection (roboRIO may take ~30 seconds to boot)
• Open the Devices page
• Confirm that CAN device appears
• If device does not appear, scrutinize device’s power and CAN connection to the system
• Use Tuner X to change the device ID
• Label the new ID on the physical device
• Repeat this procedure for every device

If you find a particular device or section of devices where communication is not possible,
then the CAN bus wiring needs to be re-inspected. Remember to “flick” / “shake” / “jostle”
the CAN wiring in various sections to attempt to reproduce red LED blips. This is a sure sign
of loose contact points.
If you are able to detect and change device ID on your devices individually, begin piecing
your CAN bus together. Start with either roboRIO <—-> device <—> PDP, or CANivore <—-
> device <—> 120 Ω resistor, to ensure termination exists at both ends. Then introduce the
remaining devices until a failure is observed or until all devices are in-circuit.
If introducing a new device creates a failure symptom, scrutinize that device by replacing it,
inspecting common wires, and inspecting power.
At the end of this section, all devices should appear (notwithstanding the above notes) and
device LEDs should not be red. TalonFX and Pigeon2 typically blink orange when they are
healthy and not controlled, and CANcoder rapid-blinks brightly. PDP may be orange or green
depending on its sticky faults.

18.1. CAN Bus Troubleshooting 133

Phoenix Pro

134 Chapter 18. Troubleshooting

19
Support

CTR Electronics prides itself on excellent customer service. Our contact information can be
found on our website.

135

https://store.ctr-electronics.com/contact-us/

	Why Phoenix Pro?
	Comprehensive API
	Canonical Units
	Time Base Synchronization
	Field Oriented Control (FOC)
	Improved Device Control
	Enhanced Support for CAN FD
	New Tuner X Self Tests
	Free High-Fidelity Simulation

	Installing Phoenix Pro
	API Installation
	System Requirements
	Offline
	Online

	Tuner X Installation

	Configuring your Device
	Device Licensing
	Purchasing a License
	Activating a License
	Activating a License without a Robot

	Verifying Activation State
	Troubleshooting

	Phoenix Tuner X
	What is Phoenix Tuner X?
	Connecting Tuner
	Connecting to the Server
	Configuring SSH Credentials (non-FRC)

	Temporary Diagnostics (FRC)
	Changing Diagnostics Server Port (non-FRC)
	Localhost Troubleshooting

	Device List
	Card Colors
	Clipboard Options & Licensing
	Batch Field Upgrade

	Device History
	Licensing from Device History

	Device Details
	Blinking
	Verifying Device Details
	Configuring Name & IDs
	Field-Upgrade Firmware Version

	Tuner Configs
	Self Test Snapshot
	Viewing Status LEDs

	Plotting
	Adjusting Plotting Time Period
	Exporting Data
	Plot Appearance & Behavior

	Pigeon 2.0 Calibration

	TalonFX
	Actuator Limits
	Limit Switches

	Status Light Reference

	Pigeon 2.0
	Pigeon 2 Troubleshooting
	Option 1: Workaround with Tuner X
	Option 2: Connect to the roboRIO Bus

	Status Light Reference
	Mount Calibration

	CANcoder
	Status Light Reference
	Magnet Placement
	Verifying Sensor Direction

	API Usage
	API Overview
	C++ IntelliSense

	Configuration
	Configuration Objects
	Future Proofing Configs

	Configurator API
	Reading Configs
	Applying Configs
	Factory Default

	Control Requests
	Applying a Control Request
	Modifying a Control Request
	Method Chaining API

	Changing Update Frequency

	Status Signals
	StatusSignalValue
	Refreshing the Signal Value
	Waiting for Signal Updates
	Changing Update Frequency
	Timestamps

	CANivore Timesync
	Latency Compensation
	SignalMeasurement

	Device Faults
	Using API to Retrieve Faults

	Enabling Actuators
	FRC Applications
	Non-FRC Applications
	FRC Lock

	Actuator Limits
	Retrieving Limit Switch State

	Device Specific
	TalonFX
	Introduction to TalonFX Control
	Control Output Types
	DutyCycle
	Voltage
	TorqueCurrentFOC

	Field Oriented Control

	Open-Loop Control
	Closed-Loop Control
	Gain Slots
	Velocity Control
	Converting from Meters

	Position Control
	Motion Magic®
	Using Motion Magic® in API

	TalonFX Remote Sensors
	RemoteCANcoder
	FusedCANcoder

	Migration Guide
	Configuration
	Applying Configs
	Factory Defaulting Configs

	Retrieving Configs

	Status Signals
	Using Status Signals
	Changing Update Frequency (Status Frame Period)

	Common Signals
	General Signals
	Talon FX Signals
	CANcoder Signals
	Pigeon 2 Signals

	Control Requests
	Using Control Requests
	Follower Motors

	Control Types

	Closed-Loop Control
	Closed Loop Gains
	Position (DutyCycle)
	Velocity (DutyCycle)

	Using Closed-Loop Control
	Motion Magic®
	Motion Profiling

	Feature Replacements
	Motor Invert
	Neutral Mode
	Nominal Output
	Sensor Phase
	Sensor Initialization Strategy
	Velocity Measurement Period/Window
	Integral Zone

	Simulation
	Introduction to Simulation
	Supported Devices
	Simulation API
	Orientation
	Inputs and Outputs

	High Fidelity CAN Bus Simulation

	WPILib Integration
	MotorController Integration
	Motor Safety
	Simulation

	Gyro Integration
	Simulation

	Examples
	Open-Loop Quickstart
	Declaring Motor Controllers
	Configure Followers & Inverts
	Full Example

	CANivore Intro
	CANivore Setup
	Supported Systems
	roboRIO
	Linux (non-FRC)

	Viewing Attached CANivores
	Field Upgrading CANivores
	Renaming CANivores

	CANivore API
	CANivore Status Prints

	Hardware-Attached Simulation
	Advanced Configuration
	CAN Bus Termination
	caniv - CANivore CLI

	Troubleshooting
	CAN Bus Troubleshooting
	Identifying Duplicate IDs
	Check your wiring
	LEDs are red - now what?
	Approach 1 (best)
	Approach 2 (easier)

	Support

